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Automation of marine seismic data processing

Abstract
Marine seismic data sets contain highly redundant information. 

Data analytics and machine learning-based solutions should 
provide opportunities to reduce turnaround and improve confi-
dence levels in output data volumes. A proof-of-concept (POC) 
thrust regime example from Indonesia illustrates that parameter 
testing can almost be eliminated if existing project parameter data 
can be mined from a database. Where quality control (QC) is 
required for complex challenges such as noise removal, supervised 
classifiers are a platform that can enable rapid global quantitative 
decisions based on relevant data attributes, moving behind the 
subjective art of observational QC. Finally, many early processing 
steps depend on reasonable knowledge of the velocity model in 
addition to the explicit dependence of imaging steps. A POC 
Monte Carlo-based model building exercise in West Africa used 
an efficient tomographic platform to demonstrate that turnaround 
can be reduced from 90 days to only a few days, even when the 
starting model was significantly wrong. These examples illustrate 
that a lot is already within our reach, and the development of 
embedded feedback loops will improve the level of automation 
further, particularly if humans can learn to let the data speak 
for itself.

Introduction
The proposed application of automated processing to towed-

streamer marine seismic projects broadly follows three consid-
erations: (1) parameterization with minimal testing, (2) acceler-
ated quality control (QC), and (3) derivation of the velocity 
model. This sequence acknowledges that appropriately condi-
tioned data are required to build any model. How much further 
can we progress to full automation? Sheridan and Verplank 
(1978) provide a relevant 10-stage hierarchy of automation levels 
in which level seven (the computer does the entire job and tells 
the human what it did) represents the highest level of automation, 
where manual decisions still outrank the computer. Complete 
delegation of decision making to algorithms will conceivably be 
as much of a psychological barrier as it will be a technological 
innovation. In our proof-of-concept (POC) examples, we advo-
cate the use of pragmatic solutions that can exploit the redundancy 
of information recorded by modern marine seismic surveys. The 
machine learning-type QC described by Bekara and Day (2019) 
is placed in the context of rapidly validating the parameterization 
of processing modules with data analytics solutions. Strategic 
data compression, onboard and onshore teams working in concert 
with common big data platforms, and the use of deep learning, 
data analytics, and Monte Carlo methods for automated velocity 
model building are all demonstrated to be relevant when stream-
lining project complexity and reducing project turnaround.
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Bridging the vessel-office distance
Seismic vessel operations are complex enterprises that depend 

on the seamless integration of many systems and platforms to 
control a vast array of data collection. Modern vessels routinely 
tow 16–18 multisensor streamers with 8–10 km length, represent-
ing a receiver array with up to 17 km2 of sensors, and record 
2–10 TB of seismic, navigation, and ancillary data each day. The 
size of the recorded data volumes are a direct function of the 
number of channels recorded and the sample rate. While real-time 
condition-based monitoring of vessel performance data is already 
streamed to virtual instrument rooms in office locations (Courtenay, 
2019), enabling data analytics and proactive management of critical 
systems, it remains impractical to transmit all of the uncompressed 
seismic data recorded each day to the office in near real time using 
geosynchronous satellite networks. Seismic data processing during 
the acquisition stage of any project must either be: (1) pursued 
onboard using available human and computing resources, 
(2) pursued onshore as the frequency of physical data drops allow, 
or (3) pursued onshore with strategic data subsets transmitted by 
satellite (possibly with data compression to reduce file sizes) and 
processed onshore in parallel with onboard activities.

Most streamer vessels have onboard human and computer 
resources that enable some form of data processing during acquisi-
tion. Fast-track preliminary interpretation products are corre-
spondingly delivered in interim form during acquisition and in 
final form soon after the completion of acquisition using abbrevi-
ated processing flows (e.g., Walker et al., 2019). Processing flows 
use either testing parameterization or production parameterization 
with the final choice of parameters in each step. Traditionally, 
production processing with the full-integrity workflow sequence 
does not begin until the physical data are received in the office 
via scheduled data drops.

Assuming that near real-time processing at the rate of acquisi-
tion is desired in an office, 2 TB of uncompressed seismic data 
representing one wavefield component from one day of towed 
multisensor streamer acquisition will take aproximately one year 
to transmit using a standard 512 Kbps geosynchronous satellite 
connection. This reduces to approximately three days using a 
64 Mbps connection that represents the upper bandwidth limit 
typically used for projects seeking near real-time transmission. It 
is therefore evident that such data must be heavily compressed to 
enable complete transmission in less than one day, though this 
remains uncommon. Alternatively, we can transmit strategic 
subsets of data to the office each day (e.g., shot gathers from one 
streamer only). Critical onboard QC, such as line acceptance 
decisions and parameterization of noise removal procedures, only 
requires subsets of field data (representative combinations of shot 
gathers, common channel ensembles, or near-field hydrophone 
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data). Such data can be robustly transmitted using low rates of data 
compression and modest satellite bandwidth connection. Office 
support of vessel personnel enables rapid and robust decisions for 
the production processing steps possible within the acquisition 
timeframe of a project, but the majority of production processing 
is completed after the acquisition stage.

The frequency of physical data drops from the vessel to the 
office is linked to the rotation of vessel crew using either large 
vessel or helicopter transfers (typically between every two and 
five weeks). This critical path drives the time lag between the 
acquisition of each sail line and the onset of production processing. 
The time taken to acquire enough sail lines within swaths with 
sufficient crossline aperture for full testing of 3D algorithms, such 
as surface-related multiple elimination and migration, is deter-
mined by the length of each line and the overall shooting plan. 
Hence, full-volume QC may not be possible before much of the 
physical data have been received in the office.

Alternatively, if high rates of data compression (probably 
50–100) are acceptable, all of the daily data could be efficiently 
streamed to the office, and production processing of the decom-
pressed data could commence without waiting for physical data 
drops. Perhaps it is time for the industry to accept that data 
compression/decompression using modern algorithms is as accept-
able as the effective signal compression introduced by sparsity-
promoting inversion solutions, multichannel transforms, and 
seismic migration.

Data analytics and processing automation
Testing, validation, and production administration are time 

consuming for any processing project. Testing is performed to 
optimize the parameters for each specific step in the processing 
sequence. Depending on the challenge the step is attempting to 
address and the complexity of the data, processing testing can 

require a lot of interactivity with the data, which can be both 
prolonged and computer-resource intensive.

As indicated, the amount of seismic data processed annually 
by a globally active contractor can be significant, especially when 
each step in the sequence has unique characteristics. If the contrac-
tor’s historical activity can be used to construct a database of 
parameters applied to all data sets, it can be mined to extract the 
most appropriate parameters for the data processing. This is based 
on similarity criteria and considering geologic setting, processing 
challenges and objectives, acquisition geometry, environmental 
conditions, and specifics of the processing sequence. The collective 
expertise and experience of contractor personnel stored in a 
database is an undeniably powerful tool for reducing turnaround. 
The data could be mined to focus testing parameterization and 
reduce testing turnaround or to bypass testing altogether.

A 400 km2 POC test was run with data from Indonesia, where 
key processing parameters for all steps in both the data domain 
preprocessing and migration were mined from a database. No 
testing was performed, and all workflows were actioned end on 
end. The resulting raw migration was then compared to the full-
integrity processing project whose parameters were excluded from 
the database and which was run in advance of the testing. Figure 1 
shows a comparison of the data from the (independent) full-
integrity work compared to that where parameters have been 
determined in advance of the project and run without testing.

The migrated stacks look similar. However, quantitative com-
parison metrics were run, including correlation analysis, normalized 
root-mean-square difference (NRMSD), and signal-to-noise (S/N) 
content, to further analyze the two volumes. QCs were run after 
each key processing step, but at no point did they affect the original 
(mined) parameter choices, and for brevity, only the final com-
parisons are shown. Such metrics are common to 4D processing 
and are therefore a good indicator for comparing the full-integrity 

Figure 1. (a) A raw migration stack response comparison of a full-integrity processing project. (b) An automated approach using data mining of a parameter database.
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volume and the automated equivalent. Correlation analysis between 
the two volumes (Figures 2a and 2b) and NRMSD (Figure 2c) 
highlight that deeper data are slightly noisier. Figure 2d suggests 
that the automated processing nevertheless preserved phase integ-
rity. The S/N content in Figure 3b indicates that the full-integrity 
data have a slightly better response (notably 30–70 Hz), albeit 
marginal. Overall, the data quality from the database-mined 
processing automation is equivalent to the full-integrity process 
and was achieved in one-third of the time taken to create the 
full-integrity volume. As with all seismic processing projects, an 
equivalent level of success cannot always be expected. However, 
as such parameter databases become more sophisticated and better 
populated, the principles herein should be broadly applicable.

The only caveat in achieving comparable results in this process-
ing automation POC work is the use of an a priori velocity model 
in the migration, which for comparison sake was taken from the 

full-integrity project. In a later section, we consider automation 
of the velocity model used for depth migrations, but first we 
address the obvious question of how the parameter selection can 
be efficiently validated.

Automated QC: Supervised large volume noise removal
Most onboard line acceptance and QC activities during marine 

seismic acquisition are based on the assessment and removal of 
noise in many thousands of shot records. Once the field data are 
accepted, modern seismic data processing flows typically have 15 
to 20 major components, each having unique characteristics 
managed by intermediate data outputs. Traditional QC has relied 
heavily on visual inspection of the prestack and poststack results 
of multiscenario parameter testing and attribute generation. 
However, the simultaneous assessment of many attributes is 
subjective, empirical, and challenging.

Figure 2. (a) Correlation coefficient. (b) Predictability. (c) NRMSD. (d) Phase.
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output data volumes. As previously alluded to, early-stage processing 
QC occurs in concert between onboard and onshore resources, 
enabled by satellite transmission and data compression. As the 

volume of data in a typical survey 
has increased over time, QC practice 
has moved toward assessing global attri-
bute maps that are computed from the 
data, such as root-mean-square ampli-
tude or S/N maps. However, such 
simplistic tools require frequent cross-
checks with the seismic data. The focus 
is on detecting outliers and anomalies, 
and humans cannot understand the 
visualization of more than two or three 
attributes at a time. Clearly, we want to 
compute as many informative attributes 
as possible to give a better sampling of 
the filtering performance. This can be 
facilitated by using statistical data min-
ing techniques to analyze the different 
attributes. Correspondingly, Bekara and 
Day (2019) describe a relevant POC 
supervised learning framework for auto-
matic denoise classification that expands 
on the unsupervised outlier detection 
methodology of Spanos and Bekara 
(2013). Their example applies to one step 
(denoise) of a processing flow, of which 
there will be several in practice. Six sail 
lines evenly dispersed throughout a 
semicompleted multisensor streamer 
survey were split into training and vali-
dation data sets of raw shot gathers. Shot 
gather-based multidimensional statisti-
cal attributes measuring the similarity 
between the output of various degrees 
of noise removal and the difference 
between input and output were com-
puted within time-spatial windows. 
Similarity will increase with increasing 
signal leakage into the filtering.

The crossplots of five different attri-
butes computed from three test lines are 
shown in Figure 4. These are only shown 
to validate the attributes, which are 
overlaid for the optimal, harsh, and mild 
filtering cases using a three-color code 
(mild is blue, optimal is green, and harsh 
is red). There will always be hidden cor-
relations between the individual attri-
butes due to their common origin. Their 
dimension can also be extremely large, 
making the subsequent classification 
problem harder. The task of decorrelating 
the attributes to extract useful structure 
is called “feature extraction.” It is a 

Figure 3. (a) Analysis window used to compute the S/N attribute. (b) S/N comparison of the full-integrity and data-
mined results.

Figure 4. (a) Crossplot of five attributes and (b) the equivalent crossplots of five principal components computed 
after spatial augmentation of the attributes. Each dot within the crossplot distribution of the three colors of red 
(mild), green (optimal), and blue (harsh) represent one filtered shot gather. Note that visual separation between the 
different clusters has improved for the primary principal components, and the corresponding decision space yielded 
negligible false-positive results by comparison to the result based on attributes. From Bekara and Day (2019).

Marine seismic data sets contain highly redundant information, 
so data analytics and deep learning-based solutions provide oppor-
tunities to reduce turnaround and improve confidence levels on 
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mapping process that transforms each vector of attributes into an 
optionally lower dimensional vector of features. Often, the features 
tend to have a better cluster-discrimination power compared to 
the attributes. Key linear feature extraction procedures are principal 
component analysis (PCA) and independent component analysis 
(ICA) (Hyvärinen et al., 2001). To take the spatial consistency of 
the filtering outcome into consideration, attributes from adjacent 
shots are merged with the attributes of the central shot, resulting 
in an augmentation of the total number of attributes for the central 
shot. Figure 4b shows the cluster of features obtained after applying 
a nonlinear mapping (spatial augmentation with 20 shots followed 
by PCA) on the cluster of attributes in Figure 4a. A supervised 
classification based on support vector machines (Cristianini and 
Shawe-Taylor, 2000) was constructed using the training data, 
yielding three decision spaces corresponding to optimal, mild, and 

harsh filtering. When using the attributes to train the machine 
learning classifier, those selected were informative, as the training 
error for all three scenarios was negligible (< 3%). The validation 
error for harsh and mild filtering was similarly small; however, 
about 20% of the optimal filtering points were initially misclassified 
as mild or harsh filtering. This error significantly decreased (from 
20% to 1%) when the machine learning classifier was trained 
instead with the features. As noted in the previous section, the 
POC example may not necessarily be as successful elsewhere for 
this equivalent processing step. Other major processing components 
would need different attributes within the same learning framework. 
However, the strategy of making better-informed decisions with 
more data references should remain robust.

Figure 5 shows a tricolor decision map for every available shot 
in the POC study. Subsequent evaluation of the shot locations, 

Figure 5. (a) Classification of all shot locations. (b) An example of a shot gather identified as requiring residual noise removal. The decision map contains one point for 
each shot gather location. The colors follow the same scheme used in Figure 4.
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identified by blue points, would result in additional residual noise 
removal. Red points correspond to false positives produced when 
training the solution with attributes.

In the dynamic offshore environment, the described approach 
would help focus attention on any priority areas with potential 
problems, thereby optimizing the use of resources working within 
challenging timeframes. More generally, supervised classifiers 
should enable global quantitative decisions based on many relevant 
data attributes, moving behind the subjective art of observational 
QC. While the POC example shown is for validating and clas-
sifying denoise, the philosophy could be extended to other major 
processing steps. Looking forward, the development of feedback 
loops will enable processing flows with even higher levels of 
automation. For example, level eight in the hierarchy of Sheridan 
and Verplank (1978) is “computer does whole job and tells human 
what it did only if human explicitly asks.”

Automated velocity model building
Any fast-track products or progressive interpretation deliv-

erables, such as angle-range gathers and stacks, explicitly depend 
on the early availability of an accurate velocity model for the entire 
data set. Simple velocity picking by onboard personnel or by office 
personnel using remote sessions to the onboard computers is robust 
during acquisition. A reasonable starting model can be produced 
rapidly with a short time lag after the receipt of data in the office. 
If data compression is acceptable to the client, there is no technical 
reason why highly compressed (and possibly subsampled in time) 
shot gathers could be transmitted to the office in near real time 
for input to full-waveform inversion (FWI), especially given that 

irreversible signal distortion from high compression rates is gener-
ally prevalent at higher frequencies of negligible relevance to FWI. 
Therefore, an FWI-based velocity model could in principle be 
ready when the physical data drop is received by the office, enabling 
zero wait to progress to demultiple, assuming that all shot domain 
denoise pursued on the vessel met the project technical ambitions. 
Furthermore, if elements of the demultiple workflow have also 
been completed on the vessel and/or in the office before the physical 
data are received, the time between data receipt and the com-
mencement of imaging will be further reduced (e.g., Saint Andre 
et al., 2010).

More generally, model building for depth imaging is one of 
the largest bottlenecks in processing workflows as well as one of 
the most critical steps. Such models are used to provide an image 
of the subsurface, from which a range of probabilities and volu-
metric estimates may be made and drilling campaigns planned 
and then actioned. Although FWI represents the pinnacle of 
velocity model building (VMB) for many practitioners, its high 
computational cost makes it impractical for scenario testing of 
different model realizations or uncertainty. Deep model building 
is often challenging for standard streamer lengths, even if cycle-
skipping-mitigated full-wavefield FWI is achievable (e.g., Ramos-
Martínez et al., 2019). Considerable scope still exists for pragmatic 
non-FWI solutions to augment faster processing workflows.

Bell et al. (2016) describe the use of a Monte Carlo simulation 
that enables multiple realizations in order to derive estimates of 
the uncertainty of an individual velocity model. The method 
performs multiple random perturbations of a starting model 
followed by tomographic inversion. This platform uses an efficient 

Figure 6. CIGs for the (a) final tomographic model, (b) initial model for (a), (c) modified and locally erroneous initial model, and (d)–(f) migrated stacks with corendered 
velocities corresponding to CIGs in the upper row.
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beam migration to establish the initial ray kinematics of the 
invariant data, which comprise wavelets extracted from the data 
through a multidimensional dip scanning process (Sherwood 
et al., 2008), performed within the migration model space generat-
ing the observed data. The process of model perturbation is 
performed in a residual migration and applies the differential 
kinematic to the observed data, consistent with the applied per-
turbation. Rather than look at the uncertainty of a single model 
and the imaging products, the methodology can also be adapted 
to create a depth imaging velocity model from scratch using either 
a benign or incorrect starting point through the same Monte 
Carlo simulation of the model space.

The starting point for the full automation of VMB in Martin 
and Bell (2019) begins with the same steps of determining what 
the data support in the model space prior to creating a randomly 
generated model population. Once generated, the population is 
tomographically inverted, and statistical analysis is performed on 
the model updates prior to reintroducing a pass of random model 
generation. The process is repeated with the goal to produce a 
model that explains the data by producing flat common-image 
gathers (CIGs) that have a zero residual for tomographic inversion. 
This is quantified by determining moveout-related metrics after 
each pass of the simulation. Convergence of the solution determines 
how many iterations are used.

A 500 km2 data set from West Africa was used in a POC test 
to reduce the time taken to produce a model by removing human 
intervention. Two initial models were tested: the starting model 

used for the actual tomographic model building project and one 
where the initial model was modified to incorporate a locally 
varying error up to 10% in the starting model. Once randomly 
perturbed, the secondary starting model could be locally up to 
15% too fast or slow. The results were checked against the final 
tomographic model, which was built using the same data and 
generated in 90 days.

Figure 6 shows three sets of CIGs and three stacks with their 
associated velocities corendered on the seismic sections. 
Figures 6a and 6d are the result of the 90-day model building 
exercise. The central image shows the starting point for the 
automated Monte Carlo model building process. The starting 
CIGs in Figures 6b and 6c show a significant level of moveout, 
as the model was up to 15% wrong. The results in Figures 7b and 7c 
show the product of the automated model building. Gather 
flatness is equivalent to the conventional approach (Figure 7a), 
and the corendered velocity models closely resemble the model 
built in 90 days.

Progressive analysis of metrics on moveout show an equivalent 
level of convergence in the resulting models, irrespective of the 
starting point (Figure 8). The workflows were initiated by a 
geophysicist who had no prior knowledge of the data or models, 
and no well constraints were available to confirm the accuracy 
of any of the resulting models. The implications of this approach 
are considerable. While the original model building project took 
90 days, both automated models were achieved in less than an 
order of magnitude of that time.

Figure 7. CIGs for the (a) final tomographic model, (b) final automated model starting with Figure 6b, (c) final automated model starting with Figure 6c, and (d)–(f) 
migrated stacks with corendered velocity models corresponding to CIGs in the upper row.  The orange arrow in (d) shows the location of the masked and updated geobody 
(channel). Blue arrows in (e) and (f) show the channels captured with the automated approach. The automated models in (e) and (f) otherwise show a strong correlation 
with the model built during a conventional velocity model workflow.



April 2020     The Leading Edge      271Special Section: Offshore technology

Summary
The progress from the sequential series (with many steps and 

interactive QC events in legacy seismic processing flows) to full 
automation will occur in a piecemeal fashion as the industry 
learns to embrace what will essentially be a hands-off paradigm. 
Towed-streamer marine seismic surveys can acquire vast data 
volumes each day, presenting an early-stage project challenge to 
cost-effective near real-time streaming of the data to onshore 
supercomputer facilities using geosynchronous satellite networks. 
An acceptance of high rates of data compression and/or the 
sharing of strategic subsets of data with onshore resources is the 
pragmatic solution to initiate production processing early during 
the acquisition stage.

Our POC example demonstrated that a collectivized digital 
experience database can be mined to fully parameterize several 
consecutive processing steps without human intervention. An 
efficient QC system is correspondingly necessary to validate such 
an approach. A supervised learning example of efficient denoise 
QC is demonstrated as being a potentially efficient platform for 
using all of the data acquired to augment better acquisition QC 
decisions in less time. It presumably heralds the way to similarly 
augment more efficient QC for other steps in a typical processing flow.

Automated parameterization validated with efficient and robust 
QC platforms is also particularly relevant for automated VMB, 
as data conditioning is inevitably required before VMB, including 
FWI. Although FWI represents the pinnacle of model building 
VMB for many practitioners, considerable scope still exists for 
pragmatic non-FWI inversion solutions to augment faster process-
ing workflows. Correspondingly, an efficient wavelet-based beam 
migration platform was shown in a large POC study to accurately 
recover depth velocity models using Monte Carlo-based tomo-
graphic inversion of moveout residuals, even when the starting 
model was highly inaccurate. Overall, a pragmatic combination 
of supervised deep learning, data analytics, and efficient imaging 

solutions can deliver substantial reduc-
tions in project turnaround while balanc-
ing human interaction and full automa-
tion. Further iterations of this workflow 
with embedded feedback loops would 
improve the level of automation. 
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