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SUMMARY

We present a new dictionary learning method for seismic data
interpolation. Dictionary learning methods train a set of basis
vectors on the data to capture the morphology of the redun-
dant signal. The basis vectors are called atoms, and the set is
referred to as the dictionary. Learned dictionaries are very ef-
fective for representing the data as sparse linear combinations
of their atoms. In conventional dictionary learning, the atoms
are unstructured and do not have an analytic expression. In the
proposed method, the atoms are constrained to represent lin-
ear events of known slopes. Using the slope information, the
atoms can be easily interpolated. Hence, a regularly sampled
data can be interpolated over a finer grid by learning a dictio-
nary on the data, finding a sparse representation of the data in
the dictionary domain, interpolating the dictionary, and finally
taking the sparse representation of the data in the interpolated
dictionary domain. The sparsity constraint ensures that atoms
with well-fitting slopes are chosen to represent the data, and
it hence prevents from aliasing and noise representation. On
synthetic and field data, we observe that the proposed method
performs a near to exact interpolation of linear events and an
accurate interpolation of curved events, and that it is robust to
noise.

INTRODUCTION

In seismic surveys, the data are typically coarsely recorded in
space. Interpolating the seismic data over a denser grid is cru-
cial as many seismic processing steps, such as designature, de-
multiple, wavefield separation, or full waveform inversion, re-
quire or benefit from a fine spatial sampling. In the case of
regularly sampled data, this interpolation task is challenging
because strong spectral aliasing occurs in the data set.

Interpolating beyond aliasing can be seen as an under-
determined problem as the true frequency content of the data is
unknown. It requires a priori information to be solved. Some
methods assume local linearity of the events and interpolate
in the frequency-space domain using error prediction filters
(Spitz, 1991; Crawley, 2001). Other methods integrate a priori
information about the seismic signal morphology to the prob-
lem via sparsity in a transform domain. These methods rely on
the following assumption: because the densely sampled seis-
mic wavefield follows the morphology described by the trans-
form, it lies on a small sub-part of the transform domain, and it
can be recovered using a sparse optimization process. For in-
terpolating aliased regularly sampled data, several transforms
have been proposed, including Fourier (Schonewille et al.,
2009; Gao et al., 2013), Radon (Ibrahim et al., 2015), curvelet
(Naghizadeh and Sacchi, 2010), seislet (Gan et al., 2015), and

focal transform (Kutscha et al., 2010).

In the quest for sparsity, dictionary learning (DL) methods
(Engan et al., 1999; Aharon et al., 2006) are alternatives to
predefining a transform. They capture the morphology of the
redundant signal present in the data, to provide a dictionary
that is optimal to represent the given data in a sparse manner.
The resulting dictionary is similar to and has the same roll as a
transform, but it cannot be analytically expressed. If a data is
represented in an orthogonal analytic transform, for instance
in Fourier, the data can be interpolated in another grid as an
analytic expression of the data is known. Such interpolation is
not possible with a conventionally learned dictionary because
it is only physically defined.

In this paper, we propose a structured dictionary learning
method that can be used to interpolate regularly sampled seis-
mic data. This method, that we refer to as slope-DL, learns
a dictionary in which the atoms are constrained to represent
linear events of known slope. Using the slope information,
each atom can be easily interpolated over a finer grid, and so
the sparse representation of the data. We present the slope-
DL method in the next section, and then we show successful
synthetic and field data applications.

METHOD

The sparse optimization problem
ens We first recall the sparse optimization problem. Consider a
recording y ∈ RN containing a signal of interest. This record-
ing can be expressed in another domain and recovered via ma-
trix multiplication with a dictionary. This dictionary is a matrix
containing an atom, i.e., a unit vector of length N, in each of its
columns (D = [a1 ... aK ] ∈ RN×K). Given that the dictionary
is well chosen, the signal of interest is sparse in the dictionary
domain. It exists a sparse vector x ∈ RK , containing a small
number of non-zero coefficients, such that

y = Dx+ r , (1)

where r is a residual signal of small energy. The sparse opti-
mization problem consists in finding this vector x. One possi-
bility is to find x that has the least number of non-zero coeffi-
cients, and such that the norm of the residual vector is bellow
a small threshold ε (Donoho et al., 2006). This minimization
problem is formally expressed as

min
x
||x||0 subject to ||y−Dx||2 ≤ ε . (2)

In presence of noise, the error threshold ε is dictated by the
noise variance σ2; a natural choice is ε = λσ

√
N, where N is

the length of the recording, and λ is a gain factor that controls
the strength of the denoising (Elad, 2010). The problem in
equation 2 is not tractable if solved exactly, but an approximate
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solution can be found using matching pursuit algorithms, e.g.,
orthogonal matching pursuit (OMP) (Pati et al., 1993).

The slope-DL method

The dictionary is the key element of the sparse optimization
problem. Its atoms need to describe the morphology of the data
to be able to compute a representation which is both sparse and
accurate. A dictionary representing the morphology of a data
set can be obtained by applying a DL algorithm on this data
set. For seismic data application, DL is often applied in 2D on
a gather. In that case, M small-sized patches are extracted from
the gather and vectorized to obtain the set of vectors y1, ...,yM
called the training set. The conventional DL problem consists
in finding the dictionary D ∈ RN×K , with K << M, and the
set of sparse coefficient vectors x1, ...,xM which minimize the
representation error given a sparsity constraint L placed on the
sparse coefficient vectors. There is no other constraint on the
dictionary. Consequently, the learned atoms are unstructured.

In the proposed method, we constrain the problem to learn
atoms that represent linear events of known slope. This struc-
tured DL problem may be mathematically expressed as finding
the dictionary D = [a1 ... aK ] that satisfies

min
{xi}M

i=1,{a j}K
j=1,{s j}K

j=1

M∑

i=1

‖yi− [a1 ... aK ]xi‖2
2

subject to
{
||xi||0 ≤ L, i = 1, ...,M
a j is linear of slope s j, j = 1, ...,K,

(3)

where by ”a j is linear of slope s j”, we mean that if it is rear-
ranged as a patch, it represents an event that is constant along
straight lines of slope s j. The problem in equation 3 is very
complex, and hence cannot be solved exactly. Similar to con-
ventional DL, we propose to find an approximate solution. The
proposed algorithm is a modified version of the K-SVD algo-
rithm presented by Rubinstein et al. (2008). It can be summa-
rized as presented in Algorithm 1. In this algorithm, brackets
are used to refer to an index of a vector or a matrix; for in-
stance, D[i, j] is the sample at the ith line and jth column of
the matrix D. Columns inside the brackets refer to all the in-
dexes in a dimension; D[i, :] would be the ith line of D. The
letter T in upper position of a vector stands for the transpose
of this vector. In line 9, the function semblance(a,s) rear-
ranges the atom a as a patch, alines the traces according to
the slope s, and computes the semblance, which is defined as∑

i(
∑

j A[i, j])2/
∑

i
∑

j A[i, j]2 for a 2D array A. In line 10,
the function mean along slope(a,s) rearranges the atom a as a
patch, alines the traces according to the slope s, averages the
traces, and places back the traces in the atom.

Interpolation using slope-DL

The slope-DL method can be used to interpolate regularly sam-
pled data. The process for interpolating a window W of a 2D
gather is as follows:
1) A large number M of patches of size O×P are extracted
from W and are stored in the columns of a matrix to obtain
a training set Y. The slope-DL algorithm is used to solve the
problem in equation 3 and learn a dictionary D of K atoms rep-

Algorithm 1 Slope-DL

1: Input: Training set Y = [y1 y2 ... yM ] ∈ RN×M

2: Parameters: Number of dictionary atoms: K, number of
iterations: I, and sparsity constraint: L

3: Initialization: Initialize the dictionary D = [a1 ... aK ], al-
locate space for the sparse coefficients X = [x1 ... xM ] and
the slopes s = [s1 ... sK ]

4: Repeat I times,
5: • Sparse coding: for i = 1, ...,M, use OMP to find a

sparse representation of the recording yi:

xi← argmin
x
||yi−Dx||2 subject to ||x||0 ≤ L

6: • Dictionary update: for j = 1, ...,K,
7: - find the indexes of the recordings that use the atom

Ω←{k| X[ j,k] 6= 0}

8: - find the principal component

a← (Y[:,Ω]−DX[:,Ω]+D[:, j]X[ j,Ω])X[ j,Ω]T

9: - find slope that maximizes the semblance of the atom

s[ j]← argmax
s

semblance(a,s)

10: - average the atom in the slope direction

a←mean along slope(a,s[ j])

11: - normalize the atom

a← a/||a||2
12: - update the coefficients of the atom

X[ j,Ω]← aT(Y[:,Ω]−DX[:,Ω]+D[:, j]X[ j,Ω])

13: - update the atom in the dictionary

D[:, j]← a

14: Output: Dictionary D, sparse coefficient matrix X, and
slope vector s

resenting linear events of known slope.
2) The sparse optimization problem that is presented in equa-
tion 2 is solved for overlapping patches of the window using
the dictionary D. It results in a sparse coefficient vector for
each overlapping patch.
3) Each atom of the dictionary D is interpolated over a finer
grid. The jth atom of the dictionary, denoted with a j, repre-
sents a linear event of slope s j when it is rearranged as a patch
of size O×P. Hence, using the slope information, additional
traces can be derived from the known traces by time shifts.
4) The interpolated dictionary found in step 3 is multiplied
with the sparse representation vectors found in step 2, which
results in the interpolation of the overlapping patches extracted
from the gather. These overlapping patches are assembled ac-
cording to their original location to obtain an interpolated ver-
sion of the window W.
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Figure 1: Interpolation of linear events using slope-DL. The original data (a,f), the down-sampled data (b,g) and its corresponding
interpolated data (c,h), the noisy down-sampled data (d,i) and its corresponding interpolated data (e,j). In the first raw, the data are
shown in the time-space domain, and in the second raw, their FK spectra are shown.

Figure 2: Interpolation of the learned dictionary (a) to a finer
sampled dictionary (b).

SYNTHETIC EXAMPLES

In a first experiment, we assessed the effectiveness of slope-
DL when it comes to interpolate aliased linear events. We
down-sampled data containing linear events and interpolated
back the data using slope-DL. The original data is shown in
the time-space domain in Figure 1a. It consists of four linear
events sampled at 2 ms in time and at 3.25 m in space. Its FK
spectrum, presented in Figure 1f, attests that the original data
is not aliased. The down-sampled data had a spatial sampling
of 12.5 m and aliasing occurred from 60 Hz (see Figures 1b

and 1g). The slope-DL method was used to interpolate the
data as described in the section ”Interpolation with slope-DL”.
In step 1, the slope-DL algorithm was applied with the number
of recordings in the training set, the number of iterations, the
patch size, the number of atoms, and the sparsity threshold,
fixed such as, M = 8000, I = 10, O×P = 32× 8, K = 400,
and L = 4. The 25 first atoms of the learned dictionary are pre-
sented in Figure 2a. In step 2, the sparse optimization problem
was solved for patches overlapping on 31 samples in time and
7 samples in space. The error threshold ε was fixed at a very
small value in order to represent any significant signal. In step
3, three traces were interpolated between each two traces of
the atom patterns. The 25 first atoms of the interpolated dic-
tionary are presented in Figure 2b. In step 4, the data were
interpolated using the sparse representation of the overlapping
patches in the interpolated dictionary domain. The interpo-
lated data and its FK spectrum are shown in Figures 1c and 1h.
The signal-to-noise ratio (S/R) of the result is 32.0 dB.

In a second experiment, we tested the robustness of the pro-
posed process face to noise. We added a gaussian white noise
to the down-sampled data. The down-sampled noisy data,
which is presented in Figures 1d and 1f, had an S/R of -1.0
dB. As in the first experiment, we used slope-DL to interpo-
late the data. The parameters were the same except for the
error threshold ε . Due to the presence of noise, we increased
it to λ

√
Nσ where λ was a gain factor set at 1.15, N was the

number of samples in a patch, and σ was the standard devia-
tion of the additive noise. The interpolated data is presented in
Figures 1e and 1j. The S/R of the interpolated data is 23.4 dB.
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Figure 3: Interpolation of a shot gather using slope-DL. The recorded data (a,e), the down-sampled data (b,f), the interpolated data
(c,g), and the error (d,h). In the first raw, the data are shown in the time-space domain, and in the second raw, their FK spectra are
shown.

FIELD DATA APPLICATION

We selected the pressure recording of a raw shot gather from
a marine seismic data set. The sampling was at 2ms in the
time dimension and at 12.5m in the offset dimension. The fre-
quencies below 2Hz, and the data outside the signal cone were
filtered out to remove the noise. This resulting gather is shown
in the time-space domain in Figure 3a and its FK spectrum is
shown in Figure 3e. The data were down-sampled at 25 m in
the offset dimension (See Figures 3b and 3d). The slope-DL
based interpolation process was applied on windows of size
400×70 samples. The process for interpolating each window
was similar to the one used in the synthetic examples. The
interpolated data are presented in Figures 3c and 3g; the S/R
is 16.5 dB. The interpolation error, e.g., difference between
the interpolated data and the original data, is presented in Fig-
ures 3d and 3h. On the spectra, we observe that the interpo-
lated data are aliased only from 60Hz, as are the original data;
interpolation was hence beyond aliasing.

CONCLUSION

We proposed a new dictionary learning method in which the
learned atoms are constrained to represent linear events of

known slope. Thanks to this structure, the dictionary can be
used to interpolate regularly sampled data beyond aliasing. It
consist in finding a sparse representation of the data in the
dictionary domain, interpolating the dictionary, and taking the
sparse representation of the data in the interpolated dictionary
domain. On the presented examples, we observe that this inter-
polation process performs a near to exact interpolation of lin-
ear events and an accurate interpolation of the curved events,
and it is robust in the presence of noise. Further work in-
cludes constraining the DL problem to learn atoms represent-
ing curved events defined by slope and curvature parameters.
This would improve the interpolation of the curved events.
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