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Summary 
 
Full waveform inversion (FWI) with 𝐿𝐿2 norm objective 
function often suffers from cycle skipping that causes the 
solution to be trapped in a local minimum, usually far from 
the true model. We introduce a new norm based on the 
optimal transport theory for measuring the data mismatch 
to overcome this problem. The new solution uses an 
exponential encoding scheme and enhances the phase 
information when compared with the conventional 𝐿𝐿2norm. 
The adjoint source is calculated trace-wise based on the 1D 
Wasserstein distance. It uses an explicit solution of the 
optimal transport over the real line. It results in an efficient 
implementation with a computational complexity of the 
adjoint source proportional to the number of shots, 
receivers and the length of recording time. We demonstrate 
the effectiveness of our solution by using the Marmousi 
model. A second example, using the BP 2004 velocity 
benchmark model, illustrates the benefit of the combination 
of the new norm and Total Variation (TV) regularization.  
 
Introduction 
 
FWI is formulated as a nonlinear inverse problem matching 
modeled data to the recorded field data (Tarantola, 1984). 
Usually, a least-square objective function is used for 
measuring the data misfit. This misfit is minimized with 
respect to model parameter and the model update is 
computed using the adjoint state method. FWI can produce 
high-resolution models of the subsurface when compared to 
ray-based methods. Due to the large scale of the problem, 
local rather than global optimization methods are 
mandatory. However, FWI is often an ill posed problem 
due to the band-limited nature of the seismic data and the 
limitations of the acquisition geometries. Furthermore, the 
non-convexity resulting from the least-square objective 
function causes the local minima, i.e., cycle-skipping 
problem, especially with data lacking low frequency 
information.  
 
It is well known that the least-square formulation of FWI 
tends to produce many local minima. This is because only 
the pointwise amplitude difference is measured 
with  𝐿𝐿2norm while the phase or travel-time information 
embedded in the data is more critical for the inversion. 
There are different approaches proposed to capture the 
travel-time difference, such as dynamic time warping and 
convolution based methods. This information is used in 
order to convexify the objective function or enlarge the true 
solution valley. In this direction, we mention the works in 

(Luo and Sava, 2011), (Ma and Hale, 2013) and (Warner 
and Guasch, 2014). 
 
Recently, the Wasserstein distance has been proposed to 
replace the 𝐿𝐿2 distance for the objective function in FWI 
(Engquist and Froese, 2014). The Wasserstein distance is a 
well-defined metric from the theory of optimal transport in 
mathematics. It was first brought up by Gaspard Monge in 
1781 (Monge, 1781) and more recently by Kantorovich 
(Kantorovich, 1942) seeking the optimal cost of 
rearranging one density into the other, where the 
transportation cost per unit mass is the Euclidean distance 
or Manhattan distance.  
 
Wasserstein distance has the ability to consider both phase 
shifts and amplitude differences It has been demonstrated 
in (Engquist, Froese and Yang, 2016) that 𝑊𝑊2 bears some 
advantageous mathematical properties, such as convexity 
with respect to shift and dilation and insensitivity to noise. 
In (Yang Engquist, Sun and Froese 2016),  𝑊𝑊2 on 2D data 
is applied to FWI on synthetic benchmark models. The 
calculation of the corresponding adjoint source requires 
solving a Monge–Ampère equation that can be 
computationally demanding. Another popular optimal 
transport metric used for FWI is the 1-Wasserstein distance 
( ), approximated by the Kantorovich Rubinstein (KR) 
norm (Métivier, et al, 2016). For this metric the transport 
map is not unique. The KR norm doesn't require data to be 
positive and mass preserved. Therefore it can be directly 
applied to the seismic data without transferring them into 
probability density function (pdf). Both analysis and 
numerical results shows the potential of FWI with optimal 
transport to mitigate cycle-skipping problem. 
 
The Wasserstein metric is designed to measure the distance 
between two pdfs. Thus, non-negativeness and unit mass 
are desired for the input. But, oscillation and sign-change 
are typical features of the seismic data. Therefore, we need 
a misfit function that takes the global features of data into 
consideration and is robust to periodicity and sign-change. 
Since seismic data are not naturally positive, a proper 
normalization method is the key to Wasserstein distance 
based inversion. Some previous methods may lead to non-
differentiable misfit function and are not compatible with 
adjoint-state method, or lose information of original data 
during the normalization.  
 
Here, we address the issue of how to transform seismic data 
into pdfs. The new solution uses an exponential encoding 
scheme and enhances the phase information when 
compared with the conventional 𝐿𝐿2  norm. The algorithm 
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 Full waveform inversion with an exponentially-encoded optimal transport norm 

uses of the 1D Wasserstein metric. As a result, the 
implementation of the adjoint source has the same order of 
computational complexity as of the conventional 𝐿𝐿2 norm. 
We illustrate our method by using the Marmousi and the 
BP 2004 velocity benchmark models. 
 
Exponentially-encoded Wassesrtein distance for seismic 
data 
 
In this section, we define a procedure to transfer the 
seismic data into pdf-like data before we calculate the 
Wasserstein distance between them. Meanwhile, we also 
pursue to extract the phase information from the seismic 
data for computing Wasserstein distance. Seismic data are 
not naturally positive, which is a challenge to apply 𝑊𝑊2 
directly. Some previous methods such as comparing the 
positive and negative parts separately (Engquist and Froese, 
2014) seem not be compatible with adjoint-state method. 
The linear transformation (Yang Engquist, Sun and Froese, 
2016) may lose the global convexity that 𝑊𝑊2  has for 
positive signals. Therefore a proper data normalization 
method is the key for inversion. 
 
Suppose we have seismic data 𝑑𝑑, which has both positive 
and negative values. We let 

                                                                                     
                                                                             

where α is a prescribed positive constant to control the 
upper bound of the power for the numerical accuracy. Since 
the exponential function has the feature that it has much 
milder derivative on the negative half real axis, the above 
procedure treat the negative and positive part of the seismic 
data differently. At the same time, the processed data is 
non-negative. We apply this procedure to both the recorded 
data and simulation with the same constant. With an 
additional scaling, we turn the recorded data d and 
simulated data u into pdf-like functions 𝒅𝒅� and 𝒖𝒖�. Therefore, 
we can apply the Wasserstein distance to measure their 
difference.  
 
Intuitively, the above algorithm is nothing but an uneven 
encoding process. All the information in the positive part of 
the data is amplified and stored in (𝟏𝟏, +∞)  and the 
information from the negative part is compressed in  (𝟎𝟎,𝟏𝟏). 
In this way, the phase information is extracted mainly from 
the positive side of the seismic data for the FWI. This 
encoding process is invertible and Fréchet differentiable. 
Therefore, according to the chain rule, the only additional 
work is to multiply the adjoint source by 

. 
FWI with this encoding process will be biased to match 
travel-time provided by the positive signal. The negative 
side is also needed, especially for FWI with reflection data. 

To make use of the phase information from the negative 
part of the data, we balance this uneven encoding by also 
taking into account the data reformed by the map 

  . 
In practice, we perform the inversion in an alternative 
fashion. That is, we switch the data encoding process 
between               and                  every few iterations.  
 
The corresponding objective function is constructed as 
 

 . 
 

Since we only change the objective function, the 
corresponding modification for the conventional FWI is to 
use a new adjoint source. It can be computed as 

 

 
 

Note that  and   are 1D functions. We can take advantage 
of the explicit expression of the Wasserstein distance for 
distributions over the real line. In this way, the 
computational complexity for obtaining the adjoint source 
is                     , where  ,  and   stand for the number 
of receivers, shots and time steps, respectively.  In practice, 
we find that the additional computational time is very small 
compared with the conventional method to calculate the 
adjoint source, which is a subtraction with the same order 
of complexity                      . 
 
The quadratic Wasserstein distance between two 1D pdfs 

 and  is defined as  

 
Here,  and  are the associated cumulative distribution 
functions (cdf) and ⋅−𝟏𝟏  stands for the pseudo-inverse 
defined as  

. 
The Fréchet derivative with respect to  is given by 
 

 
 
The above equality can be simplified using the inverse 
function theorem and we have that 
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Note that both  and  are monotonic increasing functions. 
Hence,                    and                     are computed in            
operations and both are monotonic functions. Therefore, we 
can obtain the adjoint source for a single trace with              
operations. Once the adjoint source is obtained, the rest of 
the inversion is the same as the conventional FWI.  
 
Numerical experiments 
 
We first investigated the use of our method on the 
Marmousi model (Figure 1a). The model contains many 
reflectors, steep dips, and strong velocity variations in both 
the lateral and the vertical direction. The velocity model is 
9.2 km × 3.2 km. The synthetic data was created with a 
minimum frequency of 5 Hz (zero power) and 7 Hz full 
power. The sources and receivers are both uniformly 
distributed every 20 m at 40 m depth. The maximum 
recording time is 8 s. We randomly select 31 sources per 
iteration. The initial model (Figure 1b) is created by 
smoothing the true model using a Gaussian filter with 2 km 
correlation length. With this initial model, inversion with 
𝑳𝑳𝟐𝟐 objective function fails to provide a good reconstruction 
(Figure 1c) but the 𝑾𝑾𝟐𝟐  gives a result closer to the true 
model (Figure 1d). 
 
Next, we perform numerical test on the BP 2004 
benchmark velocity model (Figure 2a) (Billette and 
Brandsberg-Dahl, 2005). The model is 28.5 km × 7.5 km 
and contains a salt body in the middle of the domain of 
interest. The synthetic data was created with a minimum 
frequency of 1 Hz (zero power) and 3 Hz full power. For 
the acquisition geometry, the sources are uniformly 
distributed every 40 m and the receivers are deployed every 
40 m with a maximum offset of 20 km. Both source and 
receiver are located at 40m depth. With this long-offset 
setting, the maximum recording time of the data is set to 12 
s. For efficiency purpose, a random selected 36 shots are 
used per iteration.  
 
A heavily smoothed model (1.1 km correlation length) 
from the true model with the water layer fixed is used as 
the starting velocity model for FWI (Figure 2b). From this 
initial model, the conventional FWI with 𝐿𝐿2 distance fails 
to recover the salt boundary (Figure 2c). As shown in 
Figure 2d, inversion with proposed algorithm produces 
better reconstruction. The salt body shallower than 7 km 
depth is well restored. Slices of initial model, true model, 
 𝐿𝐿2  reconstructed model and 𝑊𝑊2  reconstructed model at 
x=12 km are shown in Figure 3. 
 
 

 

 

 

 
Figure 1: (a): True model, (b) Initial model, (c) FWI with 
𝑳𝑳𝟐𝟐 (d) FWI with 𝑾𝑾𝟐𝟐. 
 
In this work, we focus on measuring the difference in data 
space. Thus, no conditioning or stabilization procedure, 
such as smoothing on the gradient and regularization on the 
model, is applied to the inversion results shown in Figure 2 
and 3.   
 
The oscillatory noise in FWI can be efficiently removed 
using total variation type regularization (Qiu, et al., 2016). 
The regularization is necessary to stabilize the inversion 
and inject a priori information into the optimization. The 
extension of the proposed algorithm to incorporate TV 
regularization is straightforward. The inversion results are 
shown in Figure 4 and 5. The TV regularization helps to 
produce a blocky inverted model. But, from the slices view 
(Figure 5), it is clear that the FWI with  𝑳𝑳𝟐𝟐 distance (blue 
curve) and TV regularization do not restore the salt 
boundary correctly. In contrast, the  𝑾𝑾𝟐𝟐 model is close to 
the true model showing almost perfect sediment velocity 
and salt boundary reconstruction. 
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Figure 2: (a): True model, (b) Initial model, (c) FWI with 
𝑳𝑳𝟐𝟐 (d) FWI with 𝑾𝑾𝟐𝟐. 
 
 

 
Figure 3: Slices of the velocity models in Figure 2. 
 
 

 

 
Figure 4: (a):  𝑳𝑳𝟐𝟐 with TV regularization, (b):  𝑾𝑾𝟐𝟐 with TV 
regularization 
 

 
Figure 5: Slices of the velocity models with TV 
regularization in Figure 4. 
 
Conclusions 
 
The formulation of FWI with Wasserstein distance shows 
the potential to mitigate the cycle-skipping problem present 
in the 𝑳𝑳𝟐𝟐  solution. We propose an exponential-encoding 
process to transfer the seismic data into pdf with emphasis 
on phase information. The adjoint source is calculated 
using the explicit solution of the optimal transport over the 
real line. All the efforts lead to an efficient and robust 
seismic inversion scheme. The numerical results 
demonstrate the advantages of the proposed algorithm. In 
the Marmousi example the new method allows the FWI to 
start from a heavily smoothed model with high frequency 
data and obtain a good result. The BP 2004 benchmark 
example shows how by combining the new norm with TV 
regularization the salt body velocity and boundaries can be 
reconstructed starting from a smooth model. 
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