
High-performance computing for seismic imaging; from shoestrings to the cloud
Sverre Brandsberg-Dahl, PGS

Introduction

The process of creating an image of the Earth’s interior
from surface seismic measurements has always required
some sort of computation. Norm Bleistein was the first to
impressed on me the richness in approaches and methods to
solving this rather complex problem, back in the mid 90’s
when I was a young graduate student. Ten years earlier,
Bleistein (1987) had introduced to the field of geophysics, a
rigorous treatment of Kirchhoff migration through the tools
and language of asymptotic analysis. This provided a
roadmap for how one could implement in a computer, an
imaging algorithm that would yield true-amplitude images
of reflectors in the Earth. However, at this point in time,
Norm was also truly fascinated by how geophysicists had
discovered many of these principles years earlier, mainly
through ingenuity and a deep understanding of the physics
behind the seismic experiment and how to map the
reflective layers in the sub-surface using reflections.
The earliest imaging algorithms had solved the problem of
mapping reflectors in the subsurface, not through
asymptotic analysis, but by using a string and pencil. One
of the earliest examples of this can be found in the mapping
“computer” of Haggerdorn (1958). Together with a fellow
student at the time, we actually constructed such a
“computer”, not using a single transistor, but rather
shoestring, nails and a pencil. With this we were able to
map the classic “seismic bowtie” from a common offset
section into its corresponding syncline in the subsurface
space.

Following such early innovations, the groundbreaking work
of John Claerbout (1971, 1985) caused nothing short of a
seismic shift in the way industry and academia approached
the subject of reflector mapping or migration. With the
introduction the exploding reflector principle and a series
of new and innovative ways of imaging subsurface
reflectors, the computational era has truly arrived for the
field of seismic imaging. Rapid innovation by the industry
and academia introduced several innovative and robust
approaches to how one could use a computer to effectively
create reflector maps from surface seismic data. From these
very early days until the 90’s, this state of the art seismic
imaging was using the available state of the art computers
to perform this task. That meant that seismic imaging was
being performed using mainframes and the many different
supercomputers of the era. Computers from Thinking
Machine, SGI, IBM and Cray were all commonplace as the
tools of choice for seismic processing and imaging. The
seismic companies and oil companies alike were big
customers of high end computing equipment, and the
imaging algorithms being developed were evolving along

with the ever-increasing computational power, see Figure
1. The investment levels at the time in such hardware must
have been substantial, and some of the biggest commercial
HPC installations from then until present day have been
dedicated to seismic imaging. Around the mid 2000’s
compute clusters based on commodity hardware were
introduced to the field, and rapidly concurred all aspects of
seismic imaging. By connecting together hundreds or even
thousands of individual computers, pretty much anyone
could build and have access to supercomputer power.
Clusters have remained the mainstay of the industry until
today. The latest addition to this trend is the move to more
use of cloud computing, where cluster computing is offered
as a service by a variety of providers.

According to the trend shown in Figure 1, the seismic
industry should soon be entering the era of exascale
computing. When this will happen is still highly uncertain,
given market forces and reduced investment levels, but also
due to technical challenges facing the scalability of seismic
imaging algorithms. Until today, it has been pretty much a
hunt for Flops, but dataset sizes and input/output are maybe
now the biggest obstacles to continuing on the trend from
the past. Also, more complex, heterogeneous computer
architectures, are introducing challenges around
programmability, so it might not be as easy now to adopt
new algorithms to the hardware of the day as in the past.
There is an important lesson to be had from the now
vintage machines of the 90’s, in that they were working
with a nicely balanced ratio of I/O to compute. I will come
back to this later when discussing some of the trends we
might face in the years ahead.

Figure 1: The evolution of seismic imaging algorithms and
relative compute power availabiltiy. The zoom shows some
of the most powerful supercomputers of the last 5 years.
(taken from a presentation by Calandra et al., 2017, Rice
Oil & Gas HPC Conference)

© 2017 SEG
SEG International Exposition and 87th Annual Meeting

Page 5273

D
ow

nl
oa

de
d

09
/1

5/
17

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

HPC for seismic imaging

Breaking with a long standing paradigm; clusters

Seismic imaging went through a paradigm shift about 20
years ago when the first compute clusters were introduced.
This caused a rapid and decisive shift in industry compute
platform; away from the earlier generations of mainframes
and supercomputers to relatively cheap clusters built using
commodity components.
On the algorithmic front, this helped facilitate the shift to
shot based migrations, where rather than treating the data in
CMP order or as offset classes, the seismic data was simply
imaged one shot at the time. This ushered in the era of shot
migration and introduction of the term “embarrassingly
parallel” application, as scalability was achieved by simply
adding more computers to do more shots at a time. An
illustration of data and some legacy hardware is shown in
the top portion of Figure 2. Each shot could be handed off
to an individual computer, migrated ‘in the box’, and then
the image is formed by collecting all the individual sub-
images into a final stack/image. The fidelity of the
algorithms, and problem size (aperture and frequency) was
then basically tracking the evolution of improving CPU
speed and increasing memory size. This trend is also
observable on the graph shown in Figure 1. As long as the
individual shot fit inside the footprint of the individual
server, this was indeed embarrassingly parallel, and
enabled a rapid growth in capacity and capability of
imaging algorithms. With the introduction of GPUs this
trend continued, and even more compute flops were
available to solve the imaging problems faster or more
accurately.

It is not until recent days that this model has started to be
challenged, mainly due to the slower growth in memory
size and performance. As larger and more finely sampled
computational domains are required, applications like RTM
started to push at the boundaries of what is physically
possible to do inside a single server. This trend was also
helped along, or maybe pushed along, by the ever more
advanced seismic surveys and larger data volumes acquired
by the industry. The introduction of very long offsets in
marine seismic (Long et al., 2014) pushed the problem size
up by a factor 4x as offsets increased from a typical 8km to
more than 16km and in a full-azimuth fashion, requiring a
doubling of a typical computational aperture, just to capture
the input data. Computational performance for algorithms
like RTM is obviously still key, but the true hotspot when
imaging such datasets is now shifting to lack of available
address space (memory) to efficiently hold the problem
inside the computer. With this backdrop, a logical
challenge to the prevailing shot parallel implementations
was introduced, and pushed us to look for solutions that
could provide access to very large memory footprints.
This move is also supported by the rapid adaptation of
blended data acquisition; where data instead of being

acquired as individual shot records, is recorded as
continuous records capturing multiple shots. Such records
do no lend themselves to the classical processing schemes
of cluster-based RTM, unless some form of data de-
blending is performed (Berkhout, 2009). To treat the
continuous records directly is putting further pressure on
compute architecture and algorithms, in that the time axis
now becomes much longer. An illustration of this is shown
in the bottom part of Figure 2. This also shows the back
pane of a Cray XC30 computer, where the massive wire
bundles represent the network infrastructure provided to
support the shared memory architecture of this machine.
With sufficient memory, one can imagine that the complete
seismic experiment can be treated as one, offering hope for
moving beyond the reliance on individual treatment of shot
records that prevail in most algorithms today. The choice of
algorithms closely follows the trends in available hardware,
so while the clusters have reigned supreme for quite some
time, there might be a change on the horizon towards new
algorithms and infrastructure to support them.

Figure 2: A comparison of data structure and
computaational models for the classical shot-parallel data
and hardware (top), as compared to continous data
recordings with blended acquisition, and an example of
compute hardware to support the use of shared memeory, a
Cray XC30 system.

© 2017 SEG
SEG International Exposition and 87th Annual Meeting

Page 5274

D
ow

nl
oa

de
d

09
/1

5/
17

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

HPC for seismic imaging

Implementing RTM on a shared memory architecture

In this section, I will review the effort undertaken by a team
of geophysicists and computer engineers to port a RTM
code originally developed to run on a cluster to run on a
shared memory architecture machine. The RTM code that
was originally designed to run on dual-socket servers with
local scratch disk for storage of snapshots, and the goal is
to port it to run on a Cray XC40 machine. The XC40 is also
built around dual socket compute nodes, but no local
scratch is available, and the nodes are networked to allow
for rapid access also to memory not local to any node. The
same CPUs were used in both platforms; so one could
maybe easily conclude that the best possible outcome
would be parity between running a shot inside a single node
in the cluster versus across several nodes on the XC40.

The first step in this effort was to simply run the code, as is,
on the XC40. As there is not local scratch disk in the nodes,
this would rely on storing the snapshots on a centralized,
parallel file system instead. The relative performance of
this is shown in Figure 3, indicating that such a straight port
resulting in about a 3x slowdown. The next step was to
mitigate the lack of local disk. This was done by instead
leveraging the very large memory pool available in the
XC40 for storing the snapshots. This obviously required the
use of multiple compute nodes per shot migration to create
a sufficient memory footprint to hold both the
computational domain as well as the snapshots. To
facilitate this, the FFTs used in the pseudo analytical
extrapolator (Etgen and Brandsberg-Dahl, 2009) were
replaced with distributed versions that run across all threads
in the node pool allocated for each shot. At this stage, this
was performed at math library level, switching out the
standard Intel MKL FFT with the distributed MKL FFT. As
can be seen in Figure 3, this helped performance, reducing
the runtime by about 40% relative to the version relying on
the parallel file system. However, this was still not
sufficient to get performance on par with running one shot
per node.

Continued analysis of performance of the now distributed
FFT-based implementation showed that further
optimization was possible by rearranging some of the
computational kernels of the code as well as optimizing the
transposes used when applying the TTI anisotropic terms in
the extrapolator. After these items were addressed, the
relative run time for the distributed code on XC40 was less
than when running one shot per node. Surprising maybe,
but this reflect the fact that snapshots are now stored in
memory with much faster access than even what was
provided by high-performance, in node scratch disk.

Figure 3: Relative performance of RTM when run fully
inside a dual socket commodity node and on a shared
memory massively parallel computer. A straight port,
versus re-engineering of the code.

Having successfully ported RTM to a shared memory
architecture and obtained better relative performance
compared to the one shot per node reference, the next step
was to add functionality to output azimuth sectored angle
gathers from the RTM (Frolov et al., 2016). This is further
challenging the classical cluster compute model, as the
output space is now increasing from a typical 3D stack
image volume to a 4D or 5D volume, depending on how

Figure 4: An example of azimuth sectored angle gathers from RTM, left, with RMO tomography picks overlayed. The center
image shows angle gathers from a Gulf of Mexico dataset, where the angle domain is used to combine data from two separate
datasets. The right portion shows an example of how the sub-surface azimuth direction can be very useful for image
optimization.

© 2017 SEG
SEG International Exposition and 87th Annual Meeting

Page 5275

D
ow

nl
oa

de
d

09
/1

5/
17

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

HPC for seismic imaging

many angular dimensions are used for the output image. An
example of an azimuth sectored angle gather from RTM is
shown in Figure 6 along with examples of how the angle
domain can be leverage for anything from velocity model
building to advanced image optimization.
After successfully moving RTM to run on a shared memory
computer, performance was retained, and new abilities
introduced. When dealing with very large, densely sampled
input datasets and also wanting to keep data redundancy
(pre-stack information) on output, a just as important
challenge becomes memory size, bandwidth and overall
system I/O performance. For the Gulf of Mexico FAZ
survey described by Frolov et al. (2016), each output
location has 276 angle traces, so the RTM output volumes
for the about 12,000km2 survey was 276 times larger than a
stacked image. Data management and I/O will maybe be as
important as availability of pure compute Flops when it
comes to addressing the seismic imaging applications of the
future.
With a need for more refined data decompositions and
analysis of data in multiple domains, it should be a safe bet
to expect that problem sizes will grow. Add to this the
trends towards more use of inversion algorithms, the era of
embarrassingly parallel computing might soon be behind
us.

Programmability versus performance; the future of
HPC in the seismic industry

If we as an industry are to continue to follow the trend of
compute consumption shown in Figure 1, there are
challenges ahead. The growth shown here was mainly
driven by a few key trends in HPC that the seismic industry
was able to follow and exploit fully. However, there is a
risk today that seismic imaging industry and HPC might
diverge. On one hand, the true mega compute centers of
today are server farms run by the Internet giants like
Amazon, Google and Microsoft, and they tend to have
hardware profiles very different from what we are used to
in the seismic or Oil & Gas industries. But with the rapid
growth seen in cloud computing, it might just be a
necessity for us to jump onto the trend and adapt our
problems to the prevailing hardware trends and
programming models used there. On the other hand, it is
still perfectly plausible that the classical HPC vendors will
continue to innovate and provide hardware platforms that
will prove themselves cost competitive also in the future. I
believe there will be continue focus on cost and turnaround,
so whichever compute platform can offer an edge will
prevail.
An important component in creating such a competitive
edge comes from the programming model and software
stack associated with the hardware. This is particularly true
when one considers the growing heterogeneity in hardware
with mixes of CPU, GPU and other accelerators. For a

computer to be truly useful, it must have an acceptable
programming model. If a model can offer better flexibility
and reduced turnaround in software development from
concept to at-scale implementation, it might help offset the
cost of the pure hardware components when evaluated with
a view to cost performance and cost of ownership. The use
of FPGSs comes to mind as a good example, notoriously
hard to program, but with great performance. Their
popularity in our industry has been on and off for quite
some time, and we will for sure see them again in the near
future, but hopefully with a much better programming
model as part of the package.
Maybe the key item that will help set the direction for the
future is how fast any hardware/software combination can
get an organization from concept to at-scale application.
Obviously cost performance will be a factor, but there
seems to be a trend towards an ever more rapid
development cycle for imaging technologies, that then need
to be run on a large computer system to be applicable to the
datasets from modern seismic surveys. People resources
enters this picture as well, so a holistic view on everything
from programming language, compilers and libraries, to
hardware configuration and power consumption will have
to be addressed in any successful solution.

Acknowledgement

There is a large team of people to thank at PGS for having
made the move to share memory computing possible. Of a
too long list to print here, I would like to acknowledge Raj
Gautam, Sean Crawley and Pat Manning. Thanks to Cray
Inc. for support throughout the process, and finally thanks
to PGS for support and permission to present this work.

© 2017 SEG
SEG International Exposition and 87th Annual Meeting

Page 5276

D
ow

nl
oa

de
d

09
/1

5/
17

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

EDITED REFERENCES

Note: This reference list is a copyedited version of the reference list submitted by the author. Reference lists for the 2017

SEG Technical Program Expanded Abstracts have been copyedited so that references provided with the online

metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web.

REFERENCES

Claerbout, J., 1985, Imaging the Earth’s interior: Blackwell Science.

Bleistein, N., 1987, On the imaging of reflectors in the Earth: Geophysics, 52, 931–942,

http://dx.doi.org/10.1190/1.1442363.

© 2017 SEG
SEG International Exposition and 87th Annual Meeting

Page 5277

D
ow

nl
oa

de
d

09
/1

5/
17

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SE
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/1.1442363

