
High-performance computing for seismic imaging; from shoestrings to the cloud 
Sverre Brandsberg-Dahl, PGS 
 
Introduction 
 
The process of creating an image of the Earth’s interior 
from surface seismic measurements has always required 
some sort of computation. Norm Bleistein was the first to 
impressed on me the richness in approaches and methods to 
solving this rather complex problem, back in the mid 90’s 
when I was a young graduate student. Ten years earlier, 
Bleistein (1987) had introduced to the field of geophysics, a 
rigorous treatment of Kirchhoff migration through the tools 
and language of asymptotic analysis. This provided a 
roadmap for how one could implement in a computer, an 
imaging algorithm that would yield true-amplitude images 
of reflectors in the Earth. However, at this point in time, 
Norm was also truly fascinated by how geophysicists had 
discovered many of these principles years earlier, mainly 
through ingenuity and a deep understanding of the physics 
behind the seismic experiment and how to map the 
reflective layers in the sub-surface using reflections. 
The earliest imaging algorithms had solved the problem of 
mapping reflectors in the subsurface, not through 
asymptotic analysis, but by using a string and pencil. One 
of the earliest examples of this can be found in the mapping 
“computer” of Haggerdorn (1958). Together with a fellow 
student at the time, we actually constructed such a 
“computer”, not using a single transistor, but rather 
shoestring, nails and a pencil. With this we were able to 
map the classic “seismic bowtie” from a common offset 
section into its corresponding syncline in the subsurface 
space.  
 
Following such early innovations, the groundbreaking work 
of John Claerbout (1971, 1985) caused nothing short of a 
seismic shift in the way industry and academia approached 
the subject of reflector mapping or migration. With the 
introduction the exploding reflector principle and a series 
of new and innovative ways of imaging subsurface 
reflectors, the computational era has truly arrived for the 
field of seismic imaging. Rapid innovation by the industry 
and academia introduced several innovative and robust 
approaches to how one could use a computer to effectively 
create reflector maps from surface seismic data. From these 
very early days until the 90’s, this state of the art seismic 
imaging was using the available state of the art computers 
to perform this task. That meant that seismic imaging was 
being performed using mainframes and the many different 
supercomputers of the era. Computers from Thinking 
Machine, SGI, IBM and Cray were all commonplace as the 
tools of choice for seismic processing and imaging. The 
seismic companies and oil companies alike were big 
customers of high end computing equipment, and the 
imaging algorithms being developed were evolving along 

with the ever-increasing computational power, see Figure 
1. The investment levels at the time in such hardware must 
have been substantial, and some of the biggest commercial 
HPC installations from then until present day have been 
dedicated to seismic imaging. Around the mid 2000’s 
compute clusters based on commodity hardware were 
introduced to the field, and rapidly concurred all aspects of 
seismic imaging. By connecting together hundreds or even 
thousands of individual computers, pretty much anyone 
could build and have access to supercomputer power. 
Clusters have remained the mainstay of the industry until 
today. The latest addition to this trend is the move to more 
use of cloud computing, where cluster computing is offered 
as a service by a variety of providers.  
 
According to the trend shown in Figure 1, the seismic 
industry should soon be entering the era of exascale 
computing. When this will happen is still highly uncertain, 
given market forces and reduced investment levels, but also 
due to technical challenges facing the scalability of seismic 
imaging algorithms. Until today, it has been pretty much a 
hunt for Flops, but dataset sizes and input/output are maybe 
now the biggest obstacles to continuing on the trend from 
the past. Also, more complex, heterogeneous computer 
architectures, are introducing challenges around 
programmability, so it might not be as easy now to adopt 
new algorithms to the hardware of the day as in the past. 
There is an important lesson to be had from the now 
vintage machines of the 90’s, in that they were working 
with a nicely balanced ratio of I/O to compute. I will come 
back to this later when discussing some of the trends we 
might face in the years ahead. 
 

 
 
Figure 1: The evolution of seismic imaging algorithms and 
relative compute power availabiltiy. The zoom shows some 
of the most powerful supercomputers of the last 5 years. 
(taken from a presentation by Calandra et al., 2017, Rice 
Oil & Gas HPC Conference) 
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HPC for seismic imaging 

Breaking with a long standing paradigm; clusters 
 
Seismic imaging went through a paradigm shift about 20 
years ago when the first compute clusters were introduced. 
This caused a rapid and decisive shift in industry compute 
platform; away from the earlier generations of mainframes 
and supercomputers to relatively cheap clusters built using 
commodity components. 
On the algorithmic front, this helped facilitate the shift to 
shot based migrations, where rather than treating the data in 
CMP order or as offset classes, the seismic data was simply 
imaged one shot at the time. This ushered in the era of shot 
migration and introduction of the term “embarrassingly 
parallel” application, as scalability was achieved by simply 
adding more computers to do more shots at a time. An 
illustration of data and some legacy hardware is shown in 
the top portion of Figure 2. Each shot could be handed off 
to an individual computer, migrated ‘in the box’, and then 
the image is formed by collecting all the individual sub-
images into a final stack/image. The fidelity of the 
algorithms, and problem size (aperture and frequency) was 
then basically tracking the evolution of improving CPU 
speed and increasing memory size. This trend is also 
observable on the graph shown in Figure 1.  As long as the 
individual shot fit inside the footprint of the individual 
server, this was indeed embarrassingly parallel, and 
enabled a rapid growth in capacity and capability of 
imaging algorithms. With the introduction of GPUs this 
trend continued, and even more compute flops were 
available to solve the imaging problems faster or more 
accurately. 
 
It is not until recent days that this model has started to be 
challenged, mainly due to the slower growth in memory 
size and performance. As larger and more finely sampled 
computational domains are required, applications like RTM 
started to push at the boundaries of what is physically 
possible to do inside a single server. This trend was also 
helped along, or maybe pushed along, by the ever more 
advanced seismic surveys and larger data volumes acquired 
by the industry. The introduction of very long offsets in 
marine seismic (Long et al., 2014) pushed the problem size 
up by a factor 4x as offsets increased from a typical 8km to 
more than 16km and in a full-azimuth fashion, requiring a 
doubling of a typical computational aperture, just to capture 
the input data. Computational performance for algorithms 
like RTM is obviously still key, but the true hotspot when 
imaging such datasets is now shifting to lack of available 
address space (memory) to efficiently hold the problem 
inside the computer. With this backdrop, a logical 
challenge to the prevailing shot parallel implementations 
was introduced, and pushed us to look for solutions that 
could provide access to very large memory footprints.  
This move is also supported by the rapid adaptation of 
blended data acquisition; where data instead of being 

acquired as individual shot records, is recorded as 
continuous records capturing multiple shots. Such records 
do no lend themselves to the classical processing schemes 
of cluster-based RTM, unless some form of data de-
blending is performed (Berkhout, 2009). To treat the 
continuous records directly is putting further pressure on 
compute architecture and algorithms, in that the time axis 
now becomes much longer. An illustration of this is shown 
in the bottom part of Figure 2. This also shows the back 
pane of a Cray XC30 computer, where the massive wire 
bundles represent the network infrastructure provided to 
support the shared memory architecture of this machine. 
With sufficient memory, one can imagine that the complete 
seismic experiment can be treated as one, offering hope for 
moving beyond the reliance on individual treatment of shot 
records that prevail in most algorithms today. The choice of 
algorithms closely follows the trends in available hardware, 
so while the clusters have reigned supreme for quite some 
time, there might be a change on the horizon towards new 
algorithms and infrastructure to support them.     
 
 

 
 

 
Figure 2: A comparison of data structure and 
computaational models for the classical shot-parallel data 
and hardware (top), as compared to continous data 
recordings with blended acquisition, and an example of 
compute hardware to support the use of shared memeory, a 
Cray XC30 system. 
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HPC for seismic imaging 

Implementing RTM on a shared memory architecture 
 
In this section, I will review the effort undertaken by a team 
of geophysicists and computer engineers to port a RTM 
code originally developed to run on a cluster to run on a 
shared memory architecture machine. The RTM code that 
was originally designed to run on dual-socket servers with 
local scratch disk for storage of snapshots, and the goal is 
to port it to run on a Cray XC40 machine. The XC40 is also 
built around dual socket compute nodes, but no local 
scratch is available, and the nodes are networked to allow 
for rapid access also to memory not local to any node. The 
same CPUs were used in both platforms; so one could 
maybe easily conclude that the best possible outcome 
would be parity between running a shot inside a single node 
in the cluster versus across several nodes on the XC40.  
 
The first step in this effort was to simply run the code, as is, 
on the XC40. As there is not local scratch disk in the nodes, 
this would rely on storing the snapshots on a centralized, 
parallel file system instead. The relative performance of 
this is shown in Figure 3, indicating that such a straight port 
resulting in about a 3x slowdown. The next step was to 
mitigate the lack of local disk. This was done by instead 
leveraging the very large memory pool available in the 
XC40 for storing the snapshots. This obviously required the 
use of multiple compute nodes per shot migration to create 
a sufficient memory footprint to hold both the 
computational domain as well as the snapshots. To 
facilitate this, the FFTs used in the pseudo analytical 
extrapolator (Etgen and Brandsberg-Dahl, 2009) were 
replaced with distributed versions that run across all threads 
in the node pool allocated for each shot. At this stage, this 
was performed at math library level, switching out the 
standard Intel MKL FFT with the distributed MKL FFT. As 
can be seen in Figure 3, this helped performance, reducing 
the runtime by about 40% relative to the version relying on 
the parallel file system. However, this was still not 
sufficient to get performance on par with running one shot 
per node. 

Continued analysis of performance of the now distributed 
FFT-based implementation showed that further 
optimization was possible by rearranging some of the 
computational kernels of the code as well as optimizing the 
transposes used when applying the TTI anisotropic terms in 
the extrapolator. After these items were addressed, the 
relative run time for the distributed code on XC40 was less 
than when running one shot per node. Surprising maybe, 
but this reflect the fact that snapshots are now stored in 
memory with much faster access than even what was 
provided by high-performance, in node scratch disk.   
 
 

 
Figure 3:  Relative performance of  RTM when run fully 
inside a dual socket commodity node and on a shared 
memory massively parallel computer. A straight port, 
versus re-engineering of the code. 
 
Having successfully ported RTM to a shared memory 
architecture and obtained better relative performance 
compared to the one shot per node reference, the next step 
was to add functionality to output azimuth sectored angle 
gathers from the RTM (Frolov et al., 2016). This is further 
challenging the classical cluster compute model, as the 
output space is now increasing from a typical 3D stack 
image volume to a 4D or 5D volume, depending on how 

 
Figure 4:  An example of azimuth sectored angle gathers from RTM, left, with RMO tomography picks overlayed. The center 
image shows angle gathers from a Gulf of Mexico dataset, where the angle domain is used to combine data from two separate 
datasets. The right portion shows an example of how the sub-surface azimuth direction can be very useful for image 
optimization. 
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HPC for seismic imaging 

many angular dimensions are used for the output image. An 
example of an azimuth sectored angle gather from RTM is 
shown in Figure 6 along with examples of how the angle 
domain can be leverage for anything from velocity model 
building to advanced image optimization. 
After successfully moving RTM to run on a shared memory 
computer, performance was retained, and new abilities 
introduced. When dealing with very large, densely sampled 
input datasets and also wanting to keep data redundancy 
(pre-stack information) on output, a just as important 
challenge becomes memory size, bandwidth and overall 
system I/O performance. For the Gulf of Mexico FAZ 
survey described by Frolov et al. (2016), each output 
location has 276 angle traces, so the RTM output volumes 
for the about 12,000km2 survey was 276 times larger than a 
stacked image. Data management and I/O will maybe be as 
important as availability of pure compute Flops when it 
comes to addressing the seismic imaging applications of the 
future.  
With a need for more refined data decompositions and 
analysis of data in multiple domains, it should be a safe bet 
to expect that problem sizes will grow. Add to this the 
trends towards more use of inversion algorithms, the era of 
embarrassingly parallel computing might soon be behind 
us. 
 
Programmability versus performance; the future of 
HPC in the seismic industry 
 
If we as an industry are to continue to follow the trend of 
compute consumption shown in Figure 1, there are 
challenges ahead. The growth shown here was mainly 
driven by a few key trends in HPC that the seismic industry 
was able to follow and exploit fully. However, there is a 
risk today that seismic imaging industry and HPC might 
diverge. On one hand, the true mega compute centers of 
today are server farms run by the Internet giants like 
Amazon, Google and Microsoft, and they tend to have 
hardware profiles very different from what we are used to 
in the seismic or Oil & Gas industries. But with the rapid 
growth seen in cloud computing, it might just be a 
necessity for us to jump onto the trend and adapt our 
problems to the prevailing hardware trends and 
programming models used there. On the other hand, it is 
still perfectly plausible that the classical HPC vendors will 
continue to innovate and provide hardware platforms that 
will prove themselves cost competitive also in the future. I 
believe there will be continue focus on cost and turnaround, 
so whichever compute platform can offer an edge will 
prevail. 
An important component in creating such a competitive 
edge comes from the programming model and software 
stack associated with the hardware. This is particularly true 
when one considers the growing heterogeneity in hardware 
with mixes of CPU, GPU and other accelerators. For a 

computer to be truly useful, it must have an acceptable 
programming model. If a model can offer better flexibility 
and reduced turnaround in software development from 
concept to at-scale implementation, it might help offset the 
cost of the pure hardware components when evaluated with 
a view to cost performance and cost of ownership. The use 
of FPGSs comes to mind as a good example, notoriously 
hard to program, but with great performance. Their 
popularity in our industry has been on and off for quite 
some time, and we will for sure see them again in the near 
future, but hopefully with a much better programming 
model as part of the package.  
Maybe the key item that will help set the direction for the 
future is how fast any hardware/software combination can 
get an organization from concept to at-scale application. 
Obviously cost performance will be a factor, but there 
seems to be a trend towards an ever more rapid 
development cycle for imaging technologies, that then need 
to be run on a large computer system to be applicable to the 
datasets from modern seismic surveys. People resources 
enters this picture as well, so a holistic view on everything 
from programming language, compilers and libraries, to 
hardware configuration and power consumption will have 
to be addressed in any successful solution. 
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