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SUMMARY

We address the signal and noise separation problem where the
noise is coherent. We use a dictionary learning method to learn
a dictionary of unit vectors called atoms; each one representing
an elementary waveform redundant in the noisy data. In such
a learned dictionary, some atoms represent signal waveforms
while others represent noise waveforms. Using a multivari-
ate Gaussian classifier trained on a noise recording, the atoms
representing noise waveforms are discriminated and separated
from the atoms representing seismic waveforms and two sub-
dictionaries are created; one describing the morphology of the
signal, the other describing the morphology of the noise. Us-
ing these sub-dictionaries, a morphological component anal-
ysis problem is set to separate the seismic signal and the co-
herent noise. In contrast to fixing transforms for representing
the noise and the signal, our method is entirely adapting to the
morphology of the signal and the noise. We present an appli-
cation for removing streamer vibration related noise and show
successful denoising results on synthetic and field data exam-
ples.

INTRODUCTION

In marine seismic surveys, the seismic wavefield is generally
recorded by sensors attached on streamers lowed by a vessel.
Steering devices or barnacles attached along the streamers can
cause local vibrations of the streamers. These vibrations are
recorded by the motion sensors and appear in the seismic data.
Because these vibrations are recorded continuously in time and
by several neighboring receivers, they are spatio-temporally
coherent in the data, and attenuating them is challenging.

Morphological Component Analysis (MCA) has been devel-
oped to separate different components in a data based on their
morphology (Starck et al., 2004, 2005). For data containing a
signal and a noise component, the data is sparsely represented
subject to two dictionaries; each one describing the morphol-
ogy of one of the components. If the two dictionaries have a
low mutual coherence, and noise and signal have highly sparse
representations subject to their respective dictionaries, MCA
correctly separates the signal and the noise (Bruckstein et al.,
2009). For instance, Wang et al. (2010) propose to remove
ground-roll noise from land data by solving the MCA prob-
lem using a wavelet transform for representing the signal and
a discrete cosine transform for representing the noise. How-
ever predefining dictionaries for representing the signal and
the noise components in a sparse manner is risky, as the signal
or the noise component might not have a sparse representation
subject to its attributed dictionary. In this case, the signal and

noise separation is incomplete, and the quality of the denoising
is poor.

Dictionary Learning (DL) methods (Engan et al., 1999;
Aharon et al., 2006) are alternatives to predefining a dictio-
nary. They capture the morphology of the redundant signal
present in the data to provide a dictionary which is optimal
to sparsely represent the given data in a sparse manner. Such
methods have proved to perform well on seismic data such that
the learned dictionaries enable an accurate sparse represen-
tation of the data (Beckouche and Ma, 2014; Turquais et al.,
2015).

Here, we propose to tackle the coherent noise removal prob-
lem by performing DL before setting an MCA problem. First,
a dictionary is learned on the noise contaminated data. In
this dictionary, both coherent noise and seismic signal mor-
phologies are described. Then, using a multivariate Gaussian
classifier (Anderson and Bahadur, 1962) trained on a noise
recording, the learned dictionary is separated into two sub-
dictionaries; one describing the morphology of the noise, and
the other describing the morphology of the signal. Finally, the
MCA problem is set using the two sub-dictionaries and the co-
herent noise is separated from the seismic signal.

On synthetic and field data, we show a successful applica-
tion of the combined Dictionary Learning and Morpholog-
ical Component Analysis (DLMCA) method for removing
streamer vibration related noise from marine seismic data.

METHOD

In this section, we present a method to separate coherent noise
from signal within a data window, by learning a dictionary on
the window, dividing the dictionary into two sub-dictionaries,
and solving the MCA problem.

Dictionary Learning
Dictionaries are used by sparsity promoting methods as tools
for performing sparse representations of data. Practically,
a dictionary is a set of unit vectors called atoms stored as
columns in a matrix. Hence computing a sparse representa-
tion of a recording z ∈ RN subject to a dictionary of atoms
D = [a1 ... aK ] ∈RN×K consists of finding a sparse coefficient
vector x ∈ RK such that Dx equal or approximate z. The dic-
tionary is the key element of the problem because its atoms
should describe the morphology of the data in order to en-
able a sparse representation. A dictionary optimally adapted
to represent recordings from a given dataset can be learned by
capturing the morphology present in the dataset with a DL al-
gorithm. For a 2D window, 2D small patches containing N
samples are extracted from the window and rearranged as vec-
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tors z1, ..., zM . Then, one possibility for learning the dictionary
is to find the dictionary D and the set of sparse coefficient vec-
tors {xi}M

i=1 which minimize the representation error given a
sparsity constraint m placed on the sparse coefficient vectors.
This minimization problem is mathematically expressed as

min
{xi}M

i=1,D
‖zi−Dxi‖2

2 subject to ||xi||0 ≤ m , i = 1, ...,M . (1)

The problem in Equation 1 is very complex and highly unde-
termined. However, several algorithms, such as MOD (Engan
et al., 1999) or K-SVD (Aharon et al., 2006), approximate the
problem and find a good approximate solution.

Atom classification

A dictionary D learned on a data window contaminated by a
coherent noise describes both the morphology of the noise and
the signal. If the noise and the signal are independently gener-
ated, they are also independently distributed in the window. If,
in addition, the morphology of the noise is different from the
morphology of the signal, the two morphologies will be de-
scribed by different atoms of the dictionary. Hence, the atoms
can be classified to create two sub-dictionaries; one signal sub-
dictionary Ds containing the atoms describing the morphology
of the signal and one noise sub-dictionary Dn containing the
atoms describing the morphology of the noise. Such signal
and noise sub-dictionaries would be optimal to represent the
morphology of the signal and the noise, respectively.

The atoms a1, ..., aK learned on a 2D window of a seismic
data describe 2D patterns when rearranged as 2D patches. The
morphology of such patterns can be characterized with second
order statistics features. That is, features characterizing the
statistical distribution of observed combinations of amplitude
values from a pair of samples at specified relative positions
in the pattern. For instance, the inertia is a textural feature
that reflects the homogeneity of the pattern when moving in
a given direction (∆t, ∆x) (Haralick et al., 1973). The larger
the probability that two samples separated by ∆t samples in
time and ∆x samples in spatial dimension have close amplitude
values, the lower the inertia is. The inertia feature of a pattern
is mathematically given by

I(∆t,∆x) =
G−1∑

i=0

G−1∑

j=0

(i− j)2P[i, j] , (2)

where P is the Gray-Level Co-occurrence Matrix (GLCM)
computed in the direction (∆t, ∆x) and G is its length in both
dimensions. For the given direction (∆t, ∆x), each element
P[i, j] of the GLCM is computed as the probability of chang-
ing from the amplitude i to j when moving ∆t samples in time
and ∆x samples in spatial dimension. Haralick et al. (1973)
presents the different textural features and how to compute the
GLCM with more details.

Given a vector of textural features f that characterizes its pat-
tern, an atom a can be classified as signal atom (i.e., atom
describing the morphology of the signal) or noise atom (i.e.,
atom describing the morphology of the noise) using a mul-
tivariate Gaussian classifier trained on the noise morphology
(Anderson and Bahadur, 1962). That can consist to compute

the probability of an atom to be a noise atom as a function of
its feature vector such that

p(f) =
1

(2π)
D
2 |Σc|

1
2

exp
[
−1

2
(f−µc)

T Σ−1
c (f−µc)

]
, (3)

where D is the length of f, and µc and Σc are respectively
the mean vector and covariance matrix that characterize the
multivariate Gaussian distribution of the noise feature vectors.
Both µc and Σc can be obtained by training on a noise window.
Here, it can consist of obtaining a test dataset by learning a dic-
tionary on the noise window and computing the feature vectors
of its atoms. Then, µc and Σc are computed as the mean vector
and covariance matrix of the test dataset. The atom a is clas-
sified as a noise atom if the probability p(f) is above a proba-
bility threshold. This threshold can be fixed as the maximum
probability threshold such that all the feature vectors from the
test dataset are classified as noise atoms. Or, to minimize the
impact of eventual outliers in the test dataset, one would prefer
to fix the threshold as the maximum probability threshold such
that a given percentage of the feature vectors (e.g. 95%) from
the test dataset are classified as noise. Finally, if p(f) is under
the fixed threshold, a is classified as a signal atom.

Morphological Component Analysis

Consider a recording z, containing a signal component that can
be sparsely represented subject to a dictionary Ds, and a noise
component that can be sparsely represented subject to a dic-
tionary Dn. MCA can be used to separate the noise and signal
components. The separation of the two components is exact if
the sparsity of the recording subject to the two dictionaries is
below a threshold dictated by the mutual coherence between
the dictionaries (Bruckstein et al., 2009). This implies that, for
obtaining a high quality signal and noise separation, the signal
and noise dictionaries should describe different morphologies,
and the signal and noise components should both have a very
sparse representation subject to their corresponding dictionary.
The MCA problem consists of finding a sparse representation
of the recording subject to two dictionaries. One possibility of
setting such a problem is finding the sparse vectors xs and xn
that are the solution of the following minimization problem

min
xs,xn
||z−Dsxs−Dnxn||2 subject to ||xs||0 + ||xn||0 ≤m , (4)

where m is a threshold that constrains the solution to be sparse.
Then the signal and noise components can be reconstructed
by computing the sparse approximations Dsxs and Dnxn, re-
spectively. The residual vector (i.e., z−Dsxs−Dnxn) could
contain random noise if present in the recording or signal and
coherent noise if the recording is not strictly sparse subject to
the two dictionaries. In the case where the residual vector is
suspected to contain signal, the signal can be retrieved by sub-
tracting the noise component from the recording. The problem
in Equation 4 is NP-hard, and therefore not tractable for re-
alistic seismic data sizes. However, several techniques (e.g.,
Orthogonal Matching Pursuit (OMP) (Pati et al., 1993), basis
pursuit (Chen et al., 1998)) solve an approximate problem to
find the correct or a good approximate solution to the problem
in Equation 4.

Practically, if the two dictionaries Ds and Dn contain atoms
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Figure 1: DLMCA for removing streamer vibration related noise from a synthetic signal. (a) Signal window from a noise free
synthetic shot gather. (b) Noise window from a shot gather recorded during a marine survey when no seismic source is fired.
(c) Noisy data window resulting from the addition of the noise to the signal (SNR=2.86dB). (d) Dictionary learned on the noisy
data window. (e) Signal sub-dictionary and (f) noise sub-dictionary consequent to the atom classification. (g) Signal window
(SNR=15.43dB) and (h) noise window retrieved by solving the MCA problem.

Figure 2: Location of the classified signal (black points) and
noise (red points) atoms in the feature space defined by the
inertia in the three directions (1,1), (0,1), and (1,0).

representing small 2D patches, the signal and noise compo-
nents within a 2D data window are separated by solving the
MCA problem for overlapping patches of the size of the atoms.
The signal components obtained for all the patches are assem-
bled given their location in the window and averaged to obtain
the signal component in the 2D data window. A noise window
can similarly be obtained by assembling the noise component
of the patches.

SYNTHETIC EXAMPLE

An experiment was designed to illustrate the separation of co-
herent noise from seismic signal using DLMCA. The signal
of interest (cf. Figure 1(a)) was a window of size 100× 100
samples from a noise free synthetic shot gather. The coher-
ent noise was a window from a shot gather acquired during
a marine survey when no seismic source is fired (cf. Figure
1(b)). The noise in this window is caused by vibrations of the
streamer. The frequencies below 10Hz were prior removed
from both windows. The noisy data window (cf. Figure 1(c))
obtained by adding the noise to the signal had a Signal-to-
Noise Ratio (SNR) of 2.86dB. Using the K-SVD algorithm
to solve the problem in Equation 1, a dictionary of 400 atoms
was learned from the noisy data window. The atoms have been
learned such that they represent patterns of size 10× 10 sam-
ples. A subset of 100 patterns described by the atoms is pic-
tured in Figure 1(d). Considering the small size of the patterns,
low frequency noise patterns cannot be distinguished from low
frequency signal patterns. Hence, for filtering low frequency
noise, one should use larger size patterns. The atoms of this
dictionary were characterized with three features: the inertia
computed in the directions (0,1), (1,0), and (1,1). A multivari-
ate Gaussian classifier was trained on an window that has been
extracted from the same shot gather as the window presented
in Figure 1(b). This classifier was used to discriminate the
noise atoms from the signal atoms. In Figure 2, the 400 atoms
of the learned dictionary are located in the space formed by
the three chosen features. The noise atoms are concentrated
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Figure 3: DLMCA based denoising for removing streamer vibration related noise from a common shot gather. Vertical particle
velocity of the (a) input common shot gather, (b) denoised result, and (c) removed noise.

in a small part of the feature space which attests of the quality
of the features for discriminating the noise patterns. The re-
sults of the classification for the 100 atoms subset are shown
in Figure 1(e)-(f) and attest of a correct classification. Us-
ing two sub-dictionaries resulting from the classification, the
MCA problem was solved for all overlapping patches of the
window with a sparsity constraint m = 10. The signal com-
ponents in the patches were assembled and averaged to obtain
the signal within the window (cf. Figure 1(g)). Similarly, the
noise components in the patches were assembled and averaged
to obtain the noise within the window (cf. Figure 1(h)). The
results show that the signal and the noise are accurately sepa-
rated. It is confirmed by the SNR of the reconstructed signal
reaching 15.43dB.

FIELD DATA APPLICATION

A raw shot gather, acquired during a marine survey was se-
lected. The data was sampled at 2ms in the temporal dimen-
sion and 12.5m in the offset dimension. The frequencies be-
low 10Hz were filtered. This shot gather is presented in Fig-
ure 1(a). DLMCA was performed on windows containing 25
complete neighboring traces. For each window, a dictionary
was learned using 10000 patches of size 10× 10. A signal
and a noise sub-dictionary were obtained using a multivariate
Gaussian classifier trained on the part of the shot gather framed
with dotted line in Figure 1(a). This data part cannot contain
signal from the seismic source. The MCA based signal and
noise separation was performed for all overlapping patches of
the window. The denoised shot gather shown in Figure 1(b)

has been obtained by removing the retrieved noise component
windows from the data. We can observe that the majority of
the noise has been removed leaving a high quality data. The
removed noise shown in Figure 3(c) attests that the signal has
been preserved to large extend by the denoising process with
minor differences in the direct arrival and refracted waves.

CONCLUSION

We proposed a new sparsity promoting method to remove co-
herent noise from seismic data. In this method, a dictionary is
learned from the data and separated into two sub-dictionaries;
one describing the morphology of the signal and the other
describing the morphology of the noise. Then, the two sub-
dictionaries are used to separate the noise from the signal via
MCA. In contrast to predefining dictionaries, the proposed
method entirely adapts to the morphology of the signal and the
noise present in the data. In addition, since the sub-dictionaries
are specifically learned to provide a very sparse representation
of the data, MCA performs an optimal signal and noise sep-
aration. For removing streamer vibration related noise from
seismic data, the proposed method performs state of the art
denoising results on a synthetic and a field data example.

ACKNOWLEDGMENTS

We would like to express our gratitude to the PGS research
team of Oslo for the fruitful discussions on the subject, and
thank PGS for giving the permission to publish this work.

Page 4642© 2016 SEG 
SEG International Exposition and 86th Annual Meeting 

D
ow

nl
oa

de
d 

09
/3

0/
16

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



http://dx.doi.org/10.1190/AM2016-13856592.1  
 
EDITED REFERENCES  
Note: This reference list is a copyedited version of the reference list submitted by the author. Reference lists for the 2016 

SEG Technical Program Expanded Abstracts have been copyedited so that references provided with the online 
metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web.  

  
REFERENCES  
Aharon, M., M. Elad, and A. Bruckstein, 2006, K-SVD: An algorithm for designing overcomplete 

dictionaries for sparse representation: IEEE Transactions on Signal Processing, 54, 4311–4322, 
http://dx.doi.org/10.1109/TSP.2006.881199. 

Anderson, T. W., and R. R. Bahadur, 1962, Classification into two multivariate normal distributions with 
different covariance matrices: Annals of Mathematical Statistics, 33, 420–431, 
http://dx.doi.org/10.1214/aoms/1177704568. 

Beckouche, S., and J. Ma, 2014, Simultaneous dictionary learning and denoising for seismic data: 
Geophysics, 79, no. 3, A27–A31, http://dx.doi.org/10.1190/geo2013-0382.1. 

Bruckstein, A. M., D. L. Donoho, and M. Elad, 2009, From sparse solutions of systems of equations to 
sparse modeling of signals and images: SIAM Review, 51, 34–81, 
http://dx.doi.org/10.1137/060657704. 

Chen, S. S., D. L. Donoho, and M. A. Saunders, 1998, Atomic decomposition by basis pursuit: SIAM 
Journal on Scientific Computing, 20, 33–61, http://dx.doi.org/10.1137/S1064827596304010. 

Engan, K., S. Aase, and J. Hakon Husoy, 1999, Method of optimal directions for frame design: 
Proceedings on 1999 IEEE International Conference on Acoustics, Speech, and Signal 
Processing, 2443–2446, http://dx.doi.org/10.1109/ICASSP.1999.760624. 

Haralick, R. M., K. Shanmugam, and I. Dinstein, 1973, Textural features for image classification: IEEE 
Transactions on Systems, Man, and Cybernetics, SMC-3, 610–621, 
http://dx.doi.org/10.1109/TSMC.1973.4309314. 

Pati, Y. C., R. Rezaiifar, Y. C. P. R. Rezaiifar, and P. S. Krishnaprasad, 1993, Orthogonal matching 
pursuit: Recursive function approximation with applications to wavelet decomposition: 
Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers, 40–
44. 

Starck, J.-L., M. Elad, and D. Donoho, 2004, Redundant multiscale transforms and their application for 
morphological component separation: Advances in Imaging and Electron Physics, 132, 287–348, 
http://dx.doi.org/10.1016/S1076-5670(04)32006-9. 

Starck, J.-L., Y. Moudden, J. Bobin, M. Elad, and D. Donoho, 2005, Morphological component analysis: 
Wavelets, XI, 209–223. 

Turquais, P., E. G. Asgedom, W. Sllner, and E. Otnes, 2015, Dictionary learning for signal-to-noise ratio 
enhancement: 85th Annual International Meeting, SEG, Expanded Abstracts, 4698–4702, 
http://dx.doi.org/10.1190/segam2015-5846080.1.  

Wang, W., W. Chen, J. Lei, and J. Gao, 2010, Ground roll separation by sparsity and morphological 
diversity promotion: 80th Annual International Meeting, SEG, Expanded Abstracts, 3705–3710, 
http://dx.doi.org/10.1190/1.3513621.  

Page 4643© 2016 SEG 
SEG International Exposition and 86th Annual Meeting 

D
ow

nl
oa

de
d 

09
/3

0/
16

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/AM2016-13856592.1
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1214/aoms/1177704568
http://dx.doi.org/10.1190/geo2013-0382.1
http://dx.doi.org/10.1137/060657704
http://dx.doi.org/10.1137/S1064827596304010
http://dx.doi.org/10.1109/ICASSP.1999.760624
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1016/S1076-5670(04)32006-9
http://dx.doi.org/10.1190/segam2015-5846080.1
http://dx.doi.org/10.1190/1.3513621
http://library.seg.org/action/showLinks?crossref=10.1016%2FS1076-5670%2804%2932006-9
http://library.seg.org/action/showLinks?system=10.1190%2Fgeo2013-0382.1
http://library.seg.org/action/showLinks?crossref=10.1137%2F060657704
http://library.seg.org/action/showLinks?crossref=10.1109%2FTSP.2006.881199
http://library.seg.org/action/showLinks?crossref=10.1137%2FS1064827596304010
http://library.seg.org/action/showLinks?crossref=10.1214%2Faoms%2F1177704568
http://library.seg.org/action/showLinks?crossref=10.1137%2FS1064827596304010



