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Summary 
 
 In this paper, we present a novel algorithm that 
performs adaptive subtraction of a multiple model in the 
curvelet domain. The algorithm is based on the observation 
that the predicted model is an imperfect estimate of the 
actual multiples, containing two types of error: 1. a 
systematic error that manifests as an approximately 
constant phase and amplitude error within each subband 
and 2. a localized error that potentially varies from 
coefficient to coefficient. Adaptation of the model is 
automatically controlled by parameters provided by a 
statistical modelling step. Results show that the algorithm 
works well with different types of multiples and levels of 
noise. 

Introduction 

 Multiple attenuation is an important part of a 
standard seismic processing sequence, usually consisting of 
two key steps; multiple prediction and adaptive subtraction. 
The prediction step generates a model of the multiples that 
is not perfectly accurate, often containing timing, amplitude 
and wavelet errors. The adaptive subtraction part adjusts 
the multiple model to improve its accuracy and then 
subtracts it from the data. 
 The most widely used adaptive subtraction method 
is least squares filtering (LSF), which operates in the 
time/space (TX) domain and adapts the multiple model by 
convolving it with a filter. This filter is designed to make 
events in the model optimally similar to events in the data 
(in an L2-norm sense). This is an effective method, but 
makes the assumption that multiple and primary events in 
the data are orthogonal, which is typically not the case 
when primaries and multiples overlap one another. 
 Given this drawback of the LSF method, other 
approaches to adaptive subtraction have been explored. 

Curvelet transform-based methods have received 
considerable attention in recent years because curvelets 
have a number of useful properties that can be leveraged 
for adaptive subtraction: 1. curvelets provide a sparse 
representation of seismic events, 2. events of differing dip, 
scale or TX location will often be well separated in the 
curvelet domain. 

  
 The curvelet transform represents any 2D image as a 
collection of coefficients (the curvelet domain); this image 
is expressed exactly as a linear sum of curvelet dictionary 
functions weighted by corresponding coefficient values. 
Curvelets are designed to be simultaneously localized in 
scale, direction, space and time. Each curvelet coefficient is 
thus identified by a multi-index. Figure 1 illustrates that the 
curvelet coefficients are divided into several scales and that 
the coefficients within each scale are further partitioned 
into several directions. Each scale/direction pair is called a 
subband and consists of a 2D array of complex numbers. 
Each subband corresponds to a wedge-shaped region of the 
frequency/wavenumber (FK) space as shown in Figure 2. 
The location of a coefficient in the 2D subband array 
corresponds to the relative position of the curvelet 
dictionary function in TX. 
 

 

  

Figure 1: An example of data in the TX domain (left) and the curvelet domain (right). Nguyen et al., (2010) 
 

 

Figure 2: The curvelet transform divides the FK plane of the 
seismic data in Figure 1 into several scales and directions. 
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Adaptive multiple subtraction by statistical curvelet matching 

  
 Curvelet-based adaptive subtraction methods 
roughly fall under one of two types. 
 In the first, an explicit objective function is defined 
with curvelet-domain primaries and multiples as unknowns 
to solve for. Terms in this objective function are designed 
to promote sparsity of the unknowns. Additional terms 
impose agreement with the multiple model and data (Saab 
et al., 2007). The difficulty with this method is that it is not 
easy to find a solution to the optimization problem, or to 
account for the difference between the predicted model and 
true multiples. 
 In the second, the multiple model and data are both 
transformed to the curvelet domain. The coefficients of the 
multiple model are adjusted to become “closer” to the 
coefficients of the data. In the FK domain, each complex 
coefficient corresponds to a plane wave in the TX domain. 
Varying the phase of the coefficient is equivalent to 
shifting the wave in the TX domain. Similarly, in the 
curvelet domain, a small change in the phase of a curvelet 
coefficient provides an approximate shift in the TX 
domain. This observation is used in Neelamani et al., 
(2010), where each complex curvelet coefficient of the 
predicted model decomposition is rotated and scaled within 
a limited user-specified range to match to the 
corresponding coefficient of the data.   

Method 

 In order to estimate the phase and amplitude 
difference between curvelet coefficients of the multiple 
model and the true multiples, we experiment on synthetic 
data, where true and predicted multiples are readily 
available. Analysis on the histogram of phase differences 
and amplitude ratios between curvelet coefficients of the 
true and predicted multiples shows that within each 
subband the difference can be modelled as a unimodal 
distribution concentrated around a mean value. The 
distributions for curvelet subbands with the same size tend 
to have the same mean and variance. This is because 
curvelet subbands of the same size correspond to curvelet 
functions of the same scale and similar direction (mostly 
horizontal or vertical directions). The difference in shape of 
the curvelet in predicted and true multiples can be 
approximated by the same phase shift of curvelet 
coefficients. It is also observed that the kinematic error in 
modelling the multiples will increase the variances in phase 
difference in the curvelet domain. 
 Using the above observations, we have devised an 
algorithm that adapts the curvelet coefficients of the 
multiple model in two passes: global adaptation followed 
by local adaptation. Each pass is supplemented with 
parameters derived from a statistical analysis process. A 
flow diagram of the method is shown in Figure 3. 
 At the start, the data, D, and model, M, are both 
forward curvelet transformed. From there on, the algorithm 

loops over subbands of coefficients, processing each 
independently (This could be generalized to groups of 
subbands.) Let cm be a subband of coefficients from the 
transformed model and cd the corresponding subband from 
the transformed data. 

Statistical analysis 

 Before the statistical analysis can be done, a sample 
of significant coefficients from cm are selected such that the 
corresponding coefficients in cd are mostly primary-free. 
This selection process is detailed below. It uses the 
observation that the largest amplitude coefficients in cm 
will be more highly correlated with multiple energy in cd 

than with primary energy. 
 Having found the sample set, we calculate (cd)i / 
(cm)i where i is an index over coefficients in the sample set. 
In other words, we calculate the amplitude ratios and phase 
differences. We compute Γ to be the mean amplitude ratio, 
Φ the mean phase difference, γ the standard deviation of 
amplitude ratios and ϕ the standard deviation of phase 
differences. These are provided as control parameters to the 
global and local adaptation steps. 

Selection of coefficients for statistical analysis 

 We require for the statistical analysis a sample of 
coefficients that represent only the predicted and actual 
multiple energy (i.e., largely free from primary overlap). 
For the model, we can simply select the set of most 
significant coefficients (in magnitude). However, the set of 
corresponding coefficients in the data may not contain pure 
multiple energy. This is especially true if the multiples are 
very weak (in the case of internal multiples), or the data 

 

Figure 3 : Data flow of the algorithm 
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Adaptive multiple subtraction by statistical curvelet matching 

contains strong primaries in the same location. Therefore 
we use a simple selection algorithm to filter out outliers:  
1. For each curvelet subband of the model, select a set 

of most significant coefficients 
2. Estimate the amplitude ratios with corresponding 

coefficients in the data 
3. Classify the ratios into different bins, each bin 

corresponding to a range of values (histogram) 
4.  Output the pairs of coefficients belonging to the 
most populous bin 

Global adaptation 

 The purpose of the global adaptation is to correct for 
errors in the model that are approximately constant 
throughout the subband of coefficients. These will 
correspond to systematic errors in the model such as small 
timing, amplitude and wavelet errors. The statistical 
analysis has done most of the hard work, such that the 
global adaptation simply multiplies each coefficient in cm 
by ΓeiΦ. 

Local adaptation 

 The local adaptation step aims to correct for errors 
that (potentially) vary from coefficient to coefficient. By 
removing systematic errors during the global adaptation, 
we can use tighter constraints during the local adaptation, 
thus reducing the risk of over adaptation and primary loss. 

 The statistical analysis provides automatic 
constraints, which would otherwise have to be provided as 
user parameters. Each coefficient in the model is allowed to 
phase rotate and scale to optimally match the corresponding 
coefficient in the data. The amplitude scaling and phase 
rotation are limited by constraints proportional to γ and ϕ 
respectively. 
Following are the main steps of the algorithm, as illustrated 
in Figure 3 
1. Data D and multiple model M will be transformed to 

curvelet domain, cd and  cm 
2. A number of most significant coefficients of cd, and 

the corresponding coefficients in cm are selected 
according to the selection algorithm. 

3. For each scale and angle of the curvelet transform 
used, a statistic model is estimated based on the 
difference between phase and amplitude of each pair 
of coefficient belongs to that scale and angle. 

4.  All the coefficients of each scale and angle of cm is 
transformed to match corresponding coefficients in cd 
by information from the model estimated in step 3. 
This step consists of global and local adaptation of the 
model coefficients as described above. 

5. The adjusted model coefficients are then subtracted 
from cd, the result are in then apply to an inverse 
curvelet transform to create subtracted data  

  

 

 

Figure 4 : Example of data with multiple, multiple subtraction by LSF and by the proposed curvelet matching method. 
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Data examples 

 We applied our method to several synthetic datasets, 
varying from simple to complex, comparing against the 
LSF method and looking for an optimal parameterization 
and workflow. 
 In Figure 4, results from curvelet subtraction are 
compared with results from the LSF method using 2D 
filters. The predicted multiple model is fairly good, but the 
2D LSF algorithm struggles to adapt the model to the actual 
multiples in a complex area (the highlighted region). 
Curvelet subtraction has the advantage and can adapt the 
model to match to real multiples in that area. However, the 
best result, with minimum error, is achieved when the 
model is first adapted using a short 1D LSF filter, and then 
subtracted by curvelet matching. The 1D filter makes 
events in the model  properly aligned with real multiples in 
terms of location and amplitude. As a result the curvelet 
subtraction is able to remove the multiples from the data 
more effectively. This suggest a two-stage workflow, 
where the LSF module is used as a preconditioning step, 
whilst the actual subtraction is done by the curvelet 
subtraction method. In our experiment, this two-stage 
workflow produces the best result. 
 In a second experiment, our method was used for 
adaptive subtraction on the synthetic Pluto dataset from 
SMAART consortium. With careful parameter selection 
our workflow produces slightly better results compared to 
the traditional LSF method. Figure 5 shows the data before 
multiple removal, and after the use of the LSF, and the two-
stage LSF and curvelet subtraction method. The highlighted 
area is a part of the data which the LSF-based method has 
traditionally struggled with, because primary and multiple 
events are nearly parallel. The LSF method tends to over-
adapt the predicted multiple wavelets, leading to the 
attenuation of primary energy. The curvelet subtraction 
method successfully removes the multiple without 
damaging the primary event.  

Discussion and conclusion 

 In this work we present a statistical adaptive 
subtraction method using the curvelet transform. Only 
significant curvelet coefficients in the model with 
corresponding data coefficients that are likely to represent 
only multiples are used in the estimation of a statistical 
model for each subband. The mean and variance estimated 
from the models are then used to control how the curvelet 
coefficients of the model are adapted and subtracted from 
the data. The mean value is used in a global adaptation 
step, where coefficients in each subband of the model are 
multiplied with a complex number. This step is similar to 
LSF  filtering in the curvelet domain (Ventosa et al., 2010). 
The variance value is used as a constraint in the local 
adaptation step, where each curvelet coefficient of the 
model is freely rotated and scaled to match to the 
corresponding coefficient of the data. This step is similar to 
the adaptive subtraction step in Neelamani et al., (2010). 
However, in this original method the range constraint is 
specified by the user.  
 Experiments show that our approach can offer 
improvement in areas where the LSF subtraction method 
has difficulties. Our method is versatile enough to deal with 
different types and levels of multiple noises in the data. 
Curvelet-based multiple subtraction’s advantage over 
traditional LSF subtraction is due to its flexibility in 
changing the wavelet shape and amplitude of the model to 
that of the actual multiples, without overspreading the 
wavelet too much which may lead to over-adaptation.. 
However it requires a fairly kinematically-accurate 
prediction of the multiples. A practical workflow is to use 
the LSF as a preconditioning step before curvelet 
subtraction. In this way we can maximize the advantages of 
both methods and have greater flexibility in dealing with 
the quality of data and model.  

  

 

   

Figure 5: Example of data with multiple, multiple subtraction by LSF and by the proposed curvelet matching method. 
 

Page  4569© 2016 SEG 
SEG International Exposition and 86th Annual Meeting 

D
ow

nl
oa

de
d 

09
/2

9/
16

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



EDITED REFERENCES  
Note: This reference list is a copyedited version of the reference list submitted by the author. Reference lists for the 2016 

SEG Technical Program Expanded Abstracts have been copyedited so that references provided with the online 
metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web.  

  
REFERENCES  
Neelamani, R., A. Baumstein, and W. S. Ross, 2010, Adaptive subtraction using complex-valued curvelet 

transforms: Geophysics, 75, no. 4, V51–V60, http://dx.doi.org/10.1190/1.3453425. 
Nguyen, T. T., and H. Chauris, 2010, The uniform discrete curvelet: IEEE Transactions on Signal 

Processing, 58, 3618–3634, http://dx.doi.org/10.1109/TSP.2010.2047666. 
Saab, R., D. Wang, Ö. Yilmaz, and F. J. Herrmann, 2007, Curvelet-based primary-multiple separation 

from a Bayesian perspective: 77th Annual International Meeting, SEG, Expanded Abstracts, 
2510–2514, http://dx.doi.org/10.1190/1.2792988.  

Ventosa, S., S. L. Roy, I. Huard, A. Pica, H. Rabeson, P. Ricarte, L. Duval, 2012, Adaptive multiple 
subtraction with wavelet-based complex unary Wiener filters, Geophysics, 77, V183–V192, 
http://dx.doi.org/10.1190/geo2011-0318.1 

 

Page  4570© 2016 SEG 
SEG International Exposition and 86th Annual Meeting 

D
ow

nl
oa

de
d 

09
/2

9/
16

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/1.3453425
http://dx.doi.org/10.1109/TSP.2010.2047666
http://dx.doi.org/10.1190/1.2792988
http://dx.doi.org/10.1190/geo2011-0318.1
http://library.seg.org/action/showLinks?system=10.1190%2Fgeo2011-0318.1
http://library.seg.org/action/showLinks?system=10.1190%2F1.3453425
http://library.seg.org/action/showLinks?crossref=10.1109%2FTSP.2010.2047666
http://library.seg.org/action/showLinks?crossref=10.1109%2FTSP.2010.2047666


Adaptive multiple subtraction by statistical curvelet matching 

References  
 
[Saab2007] Rayan Saab, Deli Wang, Ozguz Yilmaz and 
Felix Herrmann - Curvelet-based primary-multiple 
separation from a Bayesian perspective – the 77th Annual 
International Meeting, SEG.  
[Neelamani2010] Neelamani,Ramesh (Neelsh) et al. 
Adaptive subtraction using complex-valued curvelet 
transforms GEOPHYSICS(2010),75(4):V51 
[Nguyen2010] Truong T. Nguyen and Hervé Chauris - The 
Uniform Discrete Curvelet Transform IEEE Transactions 
on Signal Processing 08/2010; 58(7):3618 - 3634. 
[Ventosa2012] Sergi Ventosa, Sylvain Le Roy, Irène 
Huard, Antonio Pica, Hérald Rabeson, Patrice Ricarte, 
Laurent Duval, Adaptive multiple subtraction with wavelet-
based complex unary Wiener filters, Geophysics, number 
77, vol. 183, p. 183-192, November-December 2012 
 

Page  4571© 2016 SEG 
SEG International Exposition and 86th Annual Meeting 

D
ow

nl
oa

de
d 

09
/2

9/
16

 to
 2

17
.1

44
.2

43
.1

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/




