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Summary  
We propose a new regularization scheme for Full 
Waveform Inversion (FWI). The new method makes use of 
a priori information on the spatial variability of the earth 
model to overcome the limitations of the inversion in the 
presence of high velocity contrast geobodies and cycle 
skipping.  It comprises two additional regularization terms 
to the FWI objective function. The first term evaluates the 
L1 norm of total variation (TV) of the model, while the 
second term steers the solution based on local prior 
information of the model spatial variability. Both 
regularization terms can be made spatially variant to 
accommodate different geological features in the model, 
i.e. sediments (smooth changes), salt bodies (piecewise 
constant). Our procedure makes use of the split Bregman 
iterations, an effective algorithm for solving the L1 
optimization problems. The result is a computationally 
efficient and accurate implementation. We show the 
potential of the method by using the BP 2004 velocity 
benchmark model. There, our regularization scheme allows 
the inversion to start from a simple velocity model and 
delivers a high-quality reconstruction of salt bodies. 
 
Introduction  
Full Waveform Inversion (FWI) (Tarantola, 1984) solves a 
nonlinear inverse problem by matching modeled data to 
recorded field data. The matching is quantified by the 
residuals of a least-squares objective function, and the 
model update is computed as a scaled representation of its 
gradient. FWI can produce high-resolution models of the 
subsurface when compared to ray-based methods. 
However, FWI is an ill-posed problem due to the band-
limited nature of the seismic data and the limitations of the 
acquisition geometries. Therefore, a regularization 
procedure is required to steer the FWI solution toward one 
that is geologically plausible.  
 
One especially challenging case for FWI is a model with 
high contrast geobodies (e.g. salt, basalt). There the FWI 
solution gets trapped in local minima if started from a poor 
velocity model. In this situation, a combination of Total 
Variation (TV) regularization (Guo and de Hoop, 2013) 
and the use of vertical hinge-loss asymmetric TV (Esser et 
al., 2015) can recover relatively complex velocity models 
from a simple starting model. 
 
Here we discuss an alternative regularization that allows 
steering the FWI solution in any arbitrary direction based 
on prior geological information. It combines the variable 
weighted L1 norm of the total variation (TV) of the model 

with a weighted version of the model spatial variability. 
Our approach allows for a generalization of Esser et al. 
(2015) ideas, as it is not limited to constraining the 
derivative of the model in the depth direction. The variable 
regularization parameters allow the refinement of the 
sediments region of the model with a mild regularization, 
while promoting sharp contrast and constant velocity 
geobodies in a different region with a strong regularization. 
The algorithm is implemented by using the split Bregman 
method (Goldstein and Osher, 2009). Synthetic results on 
the BP 2004 benchmark model show that our method 
recovers the true velocity model where non-regularized 
FWI fails.  
 
FWI with TV regularization using the split Bregman 
algorithm 
 It is well known that the L1-TV regularization better 
performs than the L2 regularization if the model can be well 
approximated by using piecewise constant functions. The 
main advantage of the L1-TV regularization is that the 
sharp edges are well preserved while the artifacts and noise 
are efficiently removed during inversion. In other words, 
the L1-TV regularization pursues a sparse representation of 
the model in the space spanned by piecewise constant 
functions. 
 
FWI with L1 norm TV regularization can be formulated as 
the optimization problem 
 
 2

2 1min ( ) .m F m u m  ‖ ‖ ‖ ‖
  (1) 

 
Where F is the modeling operator; i.e. the composition of 
the projection to the receivers and the wave propagation. m 
is the velocity model, u is the recorded data, and λ is the 
regularization parameter. Ramos-Martinez et al. (2011) 
presented a detailed description of our adjoint-state FWI 
implementation. In this paper we focus on the 
regularization of the inversion.  
 
The second term in Equation 1 uses the L1 norm to pursue a 
sparse representation of the high contrast boundaries of the 
model. The L1 norm can be calculated by using different 
approximations (e.g. Guitton and Symes, 2003). However, 
slow convergence has been observed when using those 
approximations in order to achieve a sparse solution.  
 
Our L1 norm implementation solves the slow convergence 
problem by using the split Bregman iterations. This method 
has been proven to be efficient for solving L1 optimization 
problems, in particular for TV regularization (Goldstein 
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FWI with steerable variation regularization 

and Osher, 2009). Goldstein and Osher (2009) showed that 
the optimization problem (Equation 1) is equivalent to 
 

2
2 1min ( ) ,  such that .m F m u d d m   ‖ ‖ ‖ ‖

   (2) 
 
To weakly enforce the constraints, Equation 2 can be 
reformulated as  

2 2
, 2 1 2min ( ) .2m d F m u d d m   ‖ ‖ ‖‖ ‖ ‖

   (3) 
where we expand the model space with the new variable d. 
Finally, to enforce the constraint, the Bregman iteration can 
be applied yielding 

2 2
, 2 1 2min ( ) ,2m d F m u d d m b    ‖ ‖ ‖‖ ‖ ‖

    (4) 
where the auxiliary variable b is updated according to 
 

1 1.k k kb b m d         (5) 
 
In a later section we adapt the split Bregman algorithm to 
accommodate the objective function with the steerable 
variation term. 
   
Steerable Variation Regularization  
The L1–TV norm regularization with constant 
regularization parameter (λ) treats all regions in the model 
with homogeneous isotropic weights. Ideally, by including 
additional constraints, we would like to add any prior 
physical information about the model to steer the solution 
in any direction. We call this novel method steerable 
variation regularization.  
 
FWI with steerable variation regularization can be 
formulated as the following optimization problem 
 
 2

2 1min ( ) .m F m u m m P      ‖ ‖ ‖ ‖
      (6) 

 where the steering field P is used to accommodate the a 
priori knowledge of the velocity model. The dot product of 
the gradient of the model and the direction indicated by P 
can be considered the changing rate of the model along the 
steering field. Without taking the absolute value, we can 
not only control the magnitude of m  (with the TV), but 
also guide its direction with the second regularization term. 
With a careful choice of λ and P, we make sure that the 
sum of the regularization terms is non-negative. 
 
The field P in the steerable regularization term plays a 
crucial role in our inversion algorithm. However, it can be 
refined iteratively as the inversion stage progresses. A 
source of independent information could be a legacy model 
or an image from a sediment flood. The latest is one of the 
earliest deliveries from the velocity model building 

workflow, so it could be easier to incorporate into our 
regularization strategy in the absence of a legacy model. To 
design the FWI steerable regularization workflow, we 
follow the principle that the goal is to reconstruct the high 
contrast components in the first stages, and the details can 
be reconstructed at later stages. 
 
Spatially Variant Regularization Parameters 
 The regularization parameter (λ) on the TV term (Equation 
1) controls the smoothing of the inversion result and has 
been used in the literature as a constant value (Esser et al., 
2015). In practical situations using a constant regularization 
parameter to accommodate all regions of the model can be 
suboptimal. Many stages, where the regularization is 
relaxed, are necessary to define the high contrast events 
while preserving the high resolution in the sediments. Thus, 
it is preferable to choose a spatially variant regularization 
parameter λ for the TV regularization. It provides the 
flexibility to target the area in which, based on the a priori 
information, salt bodies may exist without tremendously 
increasing the computational cost of the inversion. 
 
With a spatially variant regularization parameter, we can 
build the salt and refine the sediments at the same time 
without precise knowledge of the salt boundaries position. 
In that case the salt does not necessarily need to be 
included in the initial model and rather can be used as a soft 
constraint in the regularization. The main reason behind 
this is that the synthetic data is sensitive with respect to the 
model, but the optimal regularization parameter is not. 
Hence, if we have inaccurate information on the salt 
boundaries, it might be preferable to include that prior 
information in the regularization parameter than in the 
misfit term.  
 
Implementation of the Steerable Variation 
Regularization  
 Following the spirit of the split Bregman algorithm, we can 
transfer the optimization with steerable variation 
regularization into an unconstrained optimization problem 
as in  

2
, 2 1min ( ) .m d F m u d d P    ‖ ‖ ‖ ‖

 such that d  m.  (7) 
The split Bregman algorithm can be applied to Equation 7 
similarly to the plain TV regularization (Equation 2). For 
the sake of simplicity, we skip the lengthy derivation in this 
abstract. The final formula is to iteratively solve 
 2

1 1 2arg min ( )2k k kd d d P d m b      ‖ ‖ ‖ ‖
   (8) 

 2 2
1 2 1 2arg min ( ) ( )2k k km F m u d m b
     ‖ ‖ ‖ ‖

    (9) 
 1 1 1.k k k kb b m d                                           (10) 
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FWI with steerable variation regularization 

This algorithm can also be understood as an alternating 
direction method of multipliers (P. L. Lions and B. 
Mercier, 1979). Note that, for the sub-problem to update 
the velocity model (Equation 9), it actually solves the 
conventional FWI with the classical L2 Tikhonov 
regularization term. Hence, we can make use of the 
standard FWI procedure (Ramos-Martinez et al., 2011) 
with minimal modifications. 
  
Numerical Experiment  
We investigated the use of steerable variation 
regularization by using a modified version of the BP 2004 
benchmark velocity model (Figure 1a) (Billette and 
Brandsberg-Dahl, 2005). The model contains two salt 
bodies with unique characteristics (different velocity 
values, size, and geometry). These properties promote 
better illumination, by the refracted/diving waves, of the 
“tooth” salt body to the right of the model than for the salt 
body to the left. The synthetic data was created with a 
minimum frequency of 3 Hz and a maximum offset of 12 
km. 
 
The starting velocity model for the FWI consists of a 
modified version of the low wavenumber model from the 
benchmark distribution, continued from the center to the 
right as a V(z) (Figure 1b). Note that the initial model does 
not contain any high contrast velocity information. At the 
same time it is not that far away from the sediments true 
velocity, with the exception of the right of the model which 
is V(z).  
 
Several stages were used to improve the convergence of the 
FWI and avoid local minima by starting at low frequencies 
and working up to higher frequencies. Center frequencies 
of 5 Hz, 9 Hz, 12 Hz, 15 Hz and 18 Hz were utilized in our 
time domain code. The same number of frequency bands 
and number of iterations were employed for all the 
compared algorithms. For the FWI with TV regularization, 
a constant regularization parameter was applied with the 
same decay rate as in the steerable variation regularization 
scheme. Using a stronger regularization in the initial stages 
and a milder regularization towards the end. 
 
Figures 1c, 1d, and 1e show the inversion results with and 
without regularization. Figure 1c displays the result of FWI 
without regularization, Figure 1d shows the result of the 
FWI with TV regularization and constant regularization 
parameter, and Figure 1e shows our steerable variance 
regularization result. Note how significant artifacts due to 
cycle skipping are observed in the result using conventional 
FWI. With TV regularization and a proper choice of the 
regularization parameter, the artifacts can be reduced and 

the result is improved but the cycle skipping is still visible. 
Our FWI with steerable regularization obtains the best 
result by defining the top and bottom salt boundaries and 
the correct velocity of the sediments bellow salt. In the 
right side of the model the conclusions from comparing the 
different regularizations are the same as the left side of the 
model, even though the starting velocity is farther away 
from the true model.  
 
Conclusions and Discussion  
We have shown a new FWI regularization scheme that 
overcomes the limitations of the inversion in the presence 
of high contrast geobodies and cycle skipping. It allows the 
use of prior information about the earth model in the 
regularization as an extra term in the objective function. 
The implementation makes use of the split Bregman 
method making it efficient and accurate.  
 
The numerical experiments demonstrate that our algorithm 
can deal with the challenges of the presence of high 
contrast geobodies and cycle skipping.  We show how the 
regularization terms can drive the solution out of local 
minima. It remains to be demonstrated that this kind of 
constraint on the solution can help the inversion deal with 
the same problems when using field data.  The errors in the 
physics used for the modeling operator and the noise in the 
data could demand the use of a better approximation of the 
wave propagation in the subsurface as well as better data 
selection techniques.  
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FWI with steerable variation regularization 

 
Figure 1:  Comparison of  different regularization methods. (a) True model,  (b) Starting model, (c) FWI without regularization, (d) FWI with TV 
regularization and (e) FWI with steerable variation regularization. 
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