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SUMMARY

We investigate dictionary learning (DL) method for enhancing
the signal-to-noise ratio (SNR) of a seismic data. The method
is applied in windows, where each of these windows is sub-
divided into overlapping small two dimensional (2D) patches.
Each patch is approximated using a linear combination of el-
ementary signals (or atoms) from a set called dictionary. De-
noising is performed by assuming the signal in each patch can
be represented as a linear combination of a few of the atoms
in the dictionary. This dictionary can be constructed either as-
suming a mathematical model for the signal (e.g. wavelets and
curvelets) or can be learned to perform best on a training set.
Unlike predefined general purpose dictionaries, learned dictio-
naries avoid any assumption about the morphology of the seis-
mic data. Hence, denoising by DL ought to provide state-of-
the-art results. In this paper, we demonstrate the performance
of the K-means singular value decomposition (K-SVD) based
DL denoising both on synthetic and field datasets. The signif-
icantly high signal preservation and SNR enhancement ability
of DL denoising is illustrated with a comparison with that of
conventional FX deconvolution.

INTRODUCTION

Raw seismic data are often contaminated with random noise
over the entire time and frequency band. This noise obscures
details and hinders seismic imaging from revealing the real
subsurface structures. Random noise in seismic signal process-
ing is a well-known problem and there are many approaches
that have been proposed to attenuate such a noise (Yilmaz,
2001). The classic random noise attenuation method is the FX
deconvolution (Canales, 1984) which mainly relays on spatial
linearity of seismic signals. However, over the past decade,
sparse and redundant representations for denoising have re-
ceived a lot of attention in image processing by providing
the state-of-the-art denoising results (Elad, 2010). When used
for denoising, sparse and redundant representations assume
that the desired signal can be reconstructed with few bases
(or atoms) in a dictionary. The dictionary could be prede-
fined (e.g. wavelets (Mallat, 1999), curvelets (Ma and Plonka,
2010), seislet (Fomel and Liu, 2010), etc) or learned from a
training dataset. When using a predefined dictionary, we fix
the representation space and assume that it can efficiently de-
scribe the data. However, the DL methods directly capture the
morphology of the data and provide the atoms that can sparsely
represent the signal. Thus, DL methods can overcome the lim-
itation of needing prior information about the morphology of
the data. In this paper, we utilized the K-means singular value
decomposition (K-SVD) based DL method to perform denois-
ing (Aharon et al., 2006). The results of K-SVD based DL

method and FX deconvolution are presented for both synthetic
and field data examples.

METHOD

The seismic section is first divided into windows. Considering
each window as a training set, it is subdivided into M over-
lapping patches, ordered lexicographically as column vectors
{yi}M

i=1. DL based denoising aims at learning the dictionary
D̂ of size n×K adapted to represent all the patches within the
training set and finding the optimal sparse vectors x̂i such that
the product D̂x̂i is the sparse approximation of the patch i. This
problem can mathematically be expressed as

({x̂i}M
i=1, D̂) = argmin

{xi}M
i=1,D

||xi||0 subject to

∥yi −Dxi∥2
2 ≤ ε ,i = 1, ...,M ,

(1)

where ||.||0 denotes the ℓ0-norm and ε is the representation er-
ror threshold. To not represent the noise in the sparse approxi-
mation, ε is fixed to the noise energy present in each patch.

The minimization problem presented in Eqn. (1) is non-convex
in regard to ({xi}M

i=1,D) and hence very complex to solve.
Thus, a common approach for solving such a problem is to
decompose it into two minimization subproblems and alter-
natively solve each one of them. For the k-th iteration, this
two-step procedure can be summarized as:

I Use the dictionary from the previous iteration D(k-1)
and solve the sparse approximation problem

min
xi

||xi||0 subject to ∥yi −D(k-1)xi∥2
2 ≤ ε , (2)

for each patch i of the learning set. For the first itera-
tion, D(0) is initialized with patches randomly chosen
from the learning set.

II Find the optimal dictionary by minimizing the errors
between the dataset and its sparse representation

min
D

∥Y−DX(k)∥2
F , (3)

where the columns of the matrices X(k) and Y are the
solutions {x̂i}M

i=1 from (I) and the learning set {yi}M
i=1

respectively.

Eqn. (2) is also a non-convex problem and hence it is very
complex to find its exact solution. However, the matching pur-
suit algorithms (e.g. orthogonal matching pursuit (OMP) (Pati
et al., 1993)) can provide quite an effective approximate solu-
tion. Eqn. (2) can also be relaxed using ℓ1-norm rather than ℓ0-
norm, which makes the problem convex and possible to solve
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Figure 1: (a) Noise free and (b) noise contaminated synthetic
common offset sections. Here, I, II, and III denote the three
windows selected for detailed analysis.

using the basis pursuit algorithm (Chen et al., 1998). In this
work, we choose to use the OMP algorithm for its simplicity
and robustness.

Eqn. (3) can be simply solved by minimizing the average resid-
ual error using the method of optimal direction (MOD) (Engan
et al., 1999). This method has been utilized by Beckouche
and Ma (2014) for denoising a seismic section and they have
showed its superiority in comparison with different predefined
dictionary methods. Here we use the K-SVD method for dic-
tionary learning, where the dictionary update is more efficient
and converges faster than MOD. In K-SVD, K atoms of the
dictionary are updated sequentially using singular value de-
composition (SVD).

By applying iteratively the two steps specified in the procedure
above, the algorithm converges to D̂ and {x̂i}M

i=1. The learned
dictionary D̂ contains the most efficient bases for representing
the dataset. Features present in several data patches are ob-
viously more useful to represent efficiently the entire dataset
and will consequently constitute the dictionary. The random
noise present in the data is different from one patch to another
and therefore will not be part of the dictionary. Finally, each
approximation D̂x̂i is the sparse linear combination of bases
describing seismic features repeated over the data, which min-
imizes the representation of noise. Thus, DL uses the redun-
dancy of the seismic features over the dataset to attenuate the
random noise.

SYNTHETIC DATA EXAMPLE

A synthetic data was generated using finite difference for an
earth model consisting of plane and syncline reflectors. Since
DL exploits the redundancy of the features over the dataset, we
selected the common-offset domain, where we expect higher

SNR=15.36 SNR=11.66 SNR=−2.35

SNR=27.03 SNR=13.43 SNR=5.22

SNR=29.64 SNR=20.15 SNR=7.84
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Figure 2: FX deconvolution and K-SVD based denoising re-
sults for the three windows selected in Fig. 1(b). Note that the
same color scale is used for all the plots.

redundancy to be present, to apply the denoising algorithm.
Fig. 1 (a) and (b) respectively show a common-offset section
before and after the addition of random Gaussian noise with
a standard deviation of 5% of the maximum amplitude in the
noise free data. To present the denoising results, we selected
three windows of size 100×100 from the common-offset sec-
tion (cf. Fig. 1(b)). For each one of these windows, we applied
the FX deconvolution and K-SVD denoising. For FX deconvo-
lution we have used a filter length of 10 time samples. To ap-
ply the K-SVD method, we extracted from each window fully
overlapping patches of size 10×10 samples in time and space.
The size of the patches has been chosen as a compromise be-
tween a good quality of denoising and a small computation
time. Since learning the dictionary on the entire dataset is ex-
pensive, we first learned the optimal dictionary on a subpart
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Figure 3: Raw common-offset field data (a), FX deconvolution result (b) and K-SVD method result (c). IV, V, and VI indicate the
windows selected for detailed analysis.

of the dataset (learning set) and then used this dictionary to
sparsely represent the entire dataset.

For learning the optimal dictionary, the two-step procedure
specified in the methodology was iterated 25 times. In the first
step, the patches of the learning set were sparsely coded us-
ing Eqn. (2). The representation error threshold was estimated
by ε = σ

√
n, where σ is the known standard deviation of the

noise present in the data and n is the length of the patch. The
first iteration dictionary was initialized with 36 randomly se-
lected patches from the learning set. Given that the patches
contain 100 samples (i.e. 10 × 10), a dictionary with only 36
atoms creates an undercomplete system of equations. How-
ever, given the simplicity of the synthetic signal, this choice
provides better denoising results. In the second step, Eqn. (3)
was used to update the dictionary. Then, we used the learned
optimal dictionary and Eqn. (3) to sparsely represent the entire
dataset and finally averaged the overlapping patches to obtain
the denoising results for a given window.

The learning and denoising results of the three selected win-
dows (cf. Fig. 1(b)) are shown in Fig. 2. Note that the 3 dic-
tionaries are quite different and constitute features that are re-
dundant in their respective windows. This shows the efficiency
and advantage of learning a dictionary rather than using a pre-
defined one. The quality of the denoising is assessed quantita-
tively using SNR calculated for the denoised data ŷ as

SNR(ŷ,yref) = 10 log10
∥yref∥2

2

∥yref − ŷ∥2
2

, (4)

where yref is the noise free data. The signal preservation ability

of the denoising algorithms was assessed by calculating the
residuals (i.e. which are obtained by subtracting the denoised
data from the noise free data) and observing the presence of
any noise or signal left.

For window I, where we have a linear flat event, both FX
deconvolution and K-SVD method provides a good SNR en-
hancement with K-SVD method being slightly better. Win-
dows II and III respectively are characterized by having non-
linear events and poor SNR. For these two windows (i.e. II and
III), denoising based on K-SVD clearly shows a much better
signal preservation and SNR enhancement (cf. Fig. 2).

FIELD DATA EXAMPLE

A raw common offset section (cf. Fig. 3(a)) was selected to
validate the performance of K-SVD based denoising. To de-
noise the entire common-offset section, we first divided the
section into windows of size 100 × 100 samples in time and
space overlapping on half of their sizes in both dimensions.
Then, each window has been filtered with the K-SVD and FX
deconvolution methods. The resulting overlapping windows
have been weighted with hamming filters and averaged to ob-
tain the denoising results of the entire section (cf. Fig. 3(b) and
(c)). A 10 time samples long filter was used for FX deconvo-
lution.

For the K-SVD method, the same process as presented in the
synthetic data example has been applied. Fully overlapping
patches of size 10 × 10 both in space and time were extracted
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for each window. Since the data contains complex features,
we made overcomplete dictionaries by setting the number of
atoms in the dictionaries to 196. Since the characteristics of
the noise are unknown, the error threshold needed for Eqn. (2)
was estimated using the median absolute deviation (MAD) of
data selected from the noisy part of the seismic section. Then,
the standard deviation σ is given by σ = MAD(dn)/0.6745,
where dn is part of the data containing only noise.

Fig. 4 shows the detailed analysis for the three windows (i.e.
IV, V and VI) selected in Fig. 3(a). For each dictionary, only
36 of the 196 atoms have been pictured. Note that the dic-
tionary parts constitute again features that are redundant in
their respective windows. Here, the denoising performance
of FX deconvolution and K-SVD methods are assessed using
the residuals after subtraction of the denoised results from the
noisy data. For window IV, where we have high-frequency
flat events, and for window V, where we have linear high-
amplitude dipping events, we observe that the residuals of
K-SVD method are random while the FX deconvolution resid-
uals show some removed signal. For window III, we observe
that the K-SVD method preserves the complex non-linear dip-
ping events due to diffraction in contrary to the FX deconvo-
lution method (cf. Fig. 4). Here, it is pertinent to note that the
results of both FX deconvolution and K-SVD method could be
made better by reducing the size of the window, which how-
ever increases the computational cost.

If the standard deviation σ of the noise present in the data is
correctly estimated, the performance of K-SVD based denois-
ing remarkably preserves the seismic signal while reducing the
noise. Here, we estimated σ using only one noisy window
in the data and assumed it can represent the noise level for
the entire section. This option was possible because the stan-
dard deviation of the noise was relatively constant for the entire
common offset section. However, this might not always be the
case and one possible extension to this technique is to estimate
the noise standard deviation for every window containing both
signal and noise and adapt the algorithm to the local standard
deviation of the noise (Donoho and Johnstone, 1994).

K-SVD method for denoising is computationally expensive
compared to FX deconvolution. As an example, filtering the
field data window IV requires 37.09s for the K-SVD method
and 0.04s for the FX deconvolution method. However, the
computation time of the K-SVD method is highly dependent
of the filtering parameters, such as the size or the overlapping
rate of the patches, and can be improved in many aspects by
adapting these parameters. Here, we focused mainly on the
quality of the results but not much on the computation time,
and consequently implemented an expensive algorithm. Adap-
tation can also be realized on the algorithm side. For example,
it is possible to switch the K-SVD algorithm for faster algo-
rithms such as the Online DL (Mairal et al., 2009).

CONCLUSION

Seismic data denoising was performed using both K-SVD
based DL and FX deconvolution methods. The two methods
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Figure 4: FX deconvolution and K-SVD method denoising re-
sults for the three data windows IV, V, VI shown in Fig. 3.
Note that the same color scale is used for all the plots.

were compared on both synthetic and field datasets. For a fixed
window size the K-SVD method out performed FX deconvo-
lution in terms of signal preservation and SNR enhancement.
Though, K-SVD method is computationally expensive com-
pared to FX deconvolution, there are quite a lot of improve-
ments that can be realized.
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