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Summary 
 
Techniques for wavefield interpolation, extrapolation and 
regularization often rely on general-purpose dictionaries 
originating in the discipline of signal or image processing. 
However, the linearity of the Helmholtz equation suggests 
that a dictionary composed of homogeneous Green’s 
functions may be specifically suitable for the reconstruction 
of the acoustic wavefields relevant to seismic exploration. 
Through such dictionary, data can be linearly mapped into 
a dual domain interpreted as an equivalent source 
distribution. The theoretical argument behind this mapping 
operation is constructed from first principles in this 
document. The scheme is then applied to the interpolation 
of a set of simple synthetic data. 
 
Introduction 
 
The quest for higher imaging resolution and the move 
towards fully 3-dimensional data-processing workflows 
justify the current interest for interpolation, extrapolation 
and regularization techniques. The ultimate goal is to 
produce 3-dimensional images and reservoir models which 
are free of imprint from the acquisition devices employed 
in the field. 
In the discipline of compressive sensing it is common to 
formulate the reconstruction of a desired quantity, based on 
coarsely and non-uniformly distributed field measurements, 
as a linear problem �	 = 	��, where � and � represent the 
data and model vectors, respectively, and � the kernel 
matrix which implements a linear relationship between 
them.  
The columns of � contain the individual analysing 
functions acting as individual elements or “words” in the 
dictionary. Within the workings of the matrix-vector 
product ��, each coefficient in � always multiplies the 
same function and can therefore be interpreted as the 
coefficient relative to that specific element in the 
dictionary.  
The model vector can be seen as a representation of the 
data in a dual domain. If the problem is suitably 
parameterised, the dictionary describes a "complete" 
transform, so that any signal of interest can be mapped into 
its dual form, and vice-versa. In case of aliasing, the 
information in � is insufficient to characterise the model � 
uniquely and two or more analysing functions may 
represent the measurements equally well.  
The approach of compressive sensing in this case is to 
privilege the model containing the least information. Such 
preference is implemented by specific sparse solvers (e.g. 
Scales and Gersztenkorn, 1988; Mallat and Zhang, 1993; 
van den Berg and Friedlander, 2008; Becker et Al., 2009), 

which effectively introduce additional information through 
the assumption that the model is small in some sense. The 
extent to which such assumption is satisfied determines the 
scheme’s potential to solve the problem beyond classical 
aliasing rules. The ideal dictionary is therefore one which 
can represent the measured data using the least amount of 
information (e.g. a small number of coefficients). 
Since the onset of compressive sensing, many such 
dictionaries have been proposed (e.g. Mallat, 1998; Candes 
and Donoho, 2000), many of them originating in the 
context of image processing and signal compression. In 
many cases the basis functions in those dictionaries are 
devoid of any physical interpretation as they are 
specifically engineered to mimic certain macroscopic 
features of the signal to be analysed. 
This work proposes a less generic dictionary with close ties 
to the acoustic wave equation and therefore specific to the 
reconstruction of seismic wavefields. It will become 
apparent that such dictionary implies utilising concepts and 
ideas akin to seismic imaging rather than to signal or image 
processing. 
 
Theory 
 
Let �� be the Green's function for the homogeneous 
unbounded medium characterized by a constant velocity ��. 
�� can be seen as the wavefield, measured at 	, produced 
by an isotropic impulsive point-source located at the origin 
 

	
∇� +	��/����	����, 	� = −��	� 
 
In the same homogeneous medium, the wavefield �� 
produced by a multiplicity of point-sources satisfies 
 

	
∇� +	��/����	����, 	� = �����, 	����� 
 
where � is the signature (wavelet) and �� is the function 
describing the location and magnitude of each point-source. 
By the linearity of the wave operator, the following 
relationship holds between the fundamental wavefield �� 
and the composite wavefield �� 
 

����, 	� = �d�′	 �����, 	��	����, 	 − 	′� 
 
Although the support for �� is theoretically infinite (all 
space), in exploration seismology wavefields are triggered 
by man-made sources positioned at known locations, whose 
effects are causal and presumably vanish at great distance. 
Contributions for large 	 can then be ignored, so the 
problem can be discretized and written in the desired form 
�	 = 	��.  
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Homogeneous Green’s functions as a dictionary for wavefield reconstruction 

However, the concepts so far laid out refer to an ideal 
homogeneous unbounded medium with scarce similarity 
with the scenarios in exploration seismology. Nevertheless, 
using a simple perturbative approach, it is straightforward 
to show how the linearity principle applies to media with 
arbitrary variations in space ��	� and to wavefields 
satisfying a wave equation of a more general kind, such as 
 


∇� +	��/��	���	���, 	, 	�� = −��	 − 	������ 
 
The previously introduced single velocity parameter �� 
now describes a conventional reference medium. A 
scattering potential   can be established as a squared 
slowness perturbation with respect to the reference medium 
(Weglein et al., 2003): 
 

1/���	� 	= 	1/���		�1 −  �	�� 
 
For the common case of marine seismic exploration �� can 
be conveniently chosen to agree with sea-water properties, 
so that   is zero at least in the vicinity of the receivers. The 
wave equation can then be rewritten in a form suggesting 
that an equivalent source distribution exists which would 
cause, in a homogeneous medium, the same wavefield as a 
point-source would in a heterogeneous medium: 
 

∇� +	��/����	���, 	�= −δ�	����� + ��/���	 �	�	��ω, 	� 

 
The distribution can be chosen to include or exclude the 
portion of the wavefield which radiates directly from the 
physical source, through the background medium, to the 
receivers. Either way, it is possible to rewrite the wave 
equation in the form 
 


∇� +	��/����	���, 	� = ��������, 	� 
 
It should be noted that the Helmholtz operator on the LHS 
is identical to the homogeneous case. It is therefore 
possible to conclude that the wave equation admits 
solutions of the type  
 

���, 	� = �d�′	 ����, 	��	����, 	 − 	′� 
 
where �� is the homogeneous Green’s function introduced 
earlier. The wavefield propagating in a medium with lateral 
variations is thus seen as a weighted superposition of the 
Green’s functions related to the reference medium.  
Again, the current expression complies with the general 
definition of a linear compressive sensing problem � =
��, where the analysing functions (the columns of �) 
identify with individual Green’s functions and � is the dual 
space (the � vector). However, the potential of a 
reconstruction scheme based on these concepts depends on 

whether the dictionary produces a sparse representation of 
the wavefield.  
The method of images applied to Green’s functions (Morse 
and Feshbach, 1956, ch 7) suggests the equivalence 
between the reflection produced by a plane boundary (in an 
otherwise homogeneous medium) and the effect of an 
additional isolated point source at a “mirrored” location 
across the boundary. By analogy, since �� is a solution to 
the wave equation for the homogeneous reference medium, 
it is reasonable to infer that � will be sparse only for 
reflections where the overburden behaves approximately as 
the reference medium (e.g. the water bottom reflection).  
Furthermore, that very same argument justifies the 
definition of an augmented problem 
 

���, 	� = �d��d�′	 ���, 	��	�$��, 	 − 	′� 
 
where � receives contributions from Green’s functions at 
different velocities. Note that the additional velocity scan 
increases the algorithm’s complexity, but does not infringe 
its linearity, so the expression still complies with the 
framework � = ��. It is worth emphasizing that the 
proposed methodology does not require any knowledge of 
the medium’s velocities. On the contrary, the estimated � 
can be analysed to determine best-fitting replacement 
velocities for reflected events. 
 
Related geophysical algorithms 
 
Wavefield reconstruction applications based on the 
scattering potential have been known for several years. The 
term itself refers to a generic quantity which can be said to 
hold a linear relationship with the observed data. Where the 
application uses data from all sources and all receivers (e.g. 
Stolt, 2002, Kaplan , 2010, ch. 4; Kutsha et al., 2010), the 
scattering potential naturally relates to the seismic image 
and thus directly to the earth’s structures and properties.  
The algorithms derived under this setup are very powerful, 
but also very costly, as they require all physical 
experiments to enter a single numerical optimization.  
In other cases, the scheme only involves data acquired 
during a single physical experiment (Trad, 2003; Kaplan, 
2010, ch. 6). In this domain, the extent to which the 
potential can be focused is limited.  
The methodology presented here belongs to this second 
category, where the scattering potential is simply seen as a 
convenient equivalent representation of the data, devoid of 
any attempts to resolve medium properties.  
 
Numerical example 
 
The proposed methodology is tested using a synthetic 
wavefield composed of hyperbolic events representing the 
seismic responses of 3 plane reflectors, as summarized in 
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Homogeneous Green’s functions as a dictionary for wavefield reconstruction 

Table 1. The wavefield is uniformly sampled with a trace 
spacing of 12.5m in the offset interval between -500m and 
2500m (Figure 2b) and conditioned to contain temporal 
frequencies up to approximately 60Hz (Figure 3b). The 
fully sampled wavefield is then uniformly under-sampled 
by a factor of 10 (one trace is kept every 10) to form the 
input dataset (Figure 2a), where temporal frequencies 
above 12.5Hz are spatially aliased (Figure 3a).  
The proposed scheme is parameterised to scan the model 
space for the offset range between -1000 and +4000m, for 
all depths compatible with the trace’s temporal duration, 
and for velocities between 1300 and 2150m/s. The 
equivalent source distribution (� as defined above) 
represented in Figure 1 is obtained using a weighted 
conjugate gradient solver configured according to the 
Iteratively Reweighted Least Squares scheme (IRLS, 
Scales and Gersztenkorn, 1988).  
It can be observed that each of the hyperbolic reflections 
maps to a small number of coefficients located in a 
constrained portion of the model space. The horizontal and 
vertical locations of the equivalent source responsible for 
each of the three reflections are particularly well-resolved 
(Figure 1b) whereas the replacement velocity can be 
estimated within a confidence range of approximately 
100m/s (Figure 1a).  
Application of the adjoint transformation produces the 
reconstructed wavefield shown in Figure 2c. The 
interpolation error (difference between the reconstructed 

wavefield and the original fully sampled data is shown in 
Figure 1d.  

 
 
Conclusions 
 
The linearity of the Helmholtz equation suggests that a 
dictionary composed of homogeneous Green’s functions 
may be specifically suitable for the reconstruction of 
seismic wavefields through the standard approach of 
compressive sensing. Such dictionary maps the data to a 
dual space which can be described as a spatial distribution 
of point-sources capable of generating a wavefield identical 
to the one being processed. As a proof of concept, the 
proposed scheme was applied successfully to the 
reconstruction of simple synthetic wavefield after it had 
been decimated to a tenth of its initial size. 

Table 1: Depth, dip angle and velocity associated with the 
three reflections in the test data 

 

Reflector 
depth 
(m) 

dip 
(degrees) 

velocity 
(m/s) 

1 300 10 1500 
2 600 20 1750 
3 800 -30 2000 

 

 
(a) (b) 

 
Figure 1: 2-dimensional representations of the equivalent source distribution (ESD, � in the main text) describing the input data 
and the recovered wavefield. (a) magnitude of the ESD stacked along the offset axis; (b) magnitude of the ESD stacked along the 
velocity axis. For ease of comparison with Figure 2, depth is represented as vertical travel time. 
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(a) (b) (c) (d) 

Figure 2: Numerical example: (a) input data decimated to a trace spacing of 125'; (b) fully sampled wavefield with a trace 
spacing of 12.5'; (c) reconstructed wavefield, with a trace spacing  of 12.5'; (d) difference between (b) and (c) (residual).  

 
(a) (b) (c) (d) 

 
Figure 3: F-k spectra of quantities displayed in Figure 2.  
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