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SUMMARY

We describe an alternative way of modeling clustered air guns,
by allowing the shape of the air bubbles to be described by
isosurfaces of an incompressible velocity potential, as opposed
to the traditional way of considering them as perfect spheres.
This method solves some close-range interaction problems,
and may possibly be used as a basis for a more complete mod-
eling of clustered air guns.

INTRODUCTION

Clustering of air guns, i.e. the positioning of two or more air
guns in such close proximity to each other that the air bubbles
will coalesce, is a popular way of improving the broadband
signature from an air gun array. The notable effects of clus-
tering are an increased bubble time period which will increase
the low frequency output, an improved primary-to-bubble ra-
tio, and a slight drop in the primary amplitude compared to
firing the guns at a greater separation distance.

When designing broadband marine seismic sources, for which
the demand is increasing (Laws et al. (2008); Hegna and Parkes
(2011); Kragh et al. (2012)), it is important to be able to model
the sources correctly in order to optimise the output. Typi-
cally, this can be done with the required accuracy for single
gun arrays by modeling the set of single guns as spherical air
bubbles, and applying a correction to the hydrostatic pressure
they experience at a certain time by adding the combined emit-
ted wavefield from all the other guns, and their ghost signals
(Ziolkowski et al.,1982). However, this method becomes prob-
lematic when two or more of the spheres will overlap, as there
is no intuitive way of handling the wavefield propagation be-
tween the two correctly. An additional factor is the small time
delays of the emitted signal, which may cause numerical prob-
lems for the differential equation solvers.

One way of avoiding this problem is to treat the interaction as
working in an incompressible fluid, as this will immediately
resolve the timing issues for the numerical solver since only
the current state is needed at each time step. Since the distance
between the two bubbles is so small anyway, it should not in-
troduce large errors. This approach is used for more complex
modeling schemes, such as the ones based on boundary inte-
gral models (see for instance Cox et al. (2004)), which solve
for the entire bubble shape at each time step. Such models do,
however, tend to be quite computationally expensive and are
often unstable, and are therefore unsuitable for using model-
ing for optimization of air gun arrays.

At the same time, a spherical compressible model has been
shown by Barker and Landrø (2012) to be able to describe the
relative bubble time period of non-coalescing bubbles by a en-
ergy comparison, so even simpler incompressible models seem

to contain the vital parts of physics concerning the increase of
the bubble time period.

A good approximation may then be to allow the air bubble
shape to deviate from a perfect sphere, and merge with other
bubbles, but restrict the number of possible shapes it may ob-
tain in order to reduce the number of variables used by the
solver.

One possible family of shapes which can be used are the iso-
surfaces of the velocity potential, which we will investigate
here.

THE GENERALISED RAYLEIGH EQUATION

The simplest differential equation trying to describe the mo-
tion of a submerged bubble filled with a gas is the equation
described by Rayleigh (1917). It is based on the assumption
of a spherical bubble in an incompressible fluid, has no energy
loss and can be derived by considering an energy balance be-
tween the kinetic energy of the fluid and the potential energy
of the bubble (see for instance Barker and Landrø (2012)). It
is possible to extend the equation to be valid for non-spherical
bubbles as well, as long as it is possible to calculate the corre-
sponding kinetic energy. The potential energy is a function of
the volume and equation of state, and is therefore unchanged
in this case. By assuming that the energy is proportional to the
corresponding energy of a spherical bubble of the same radius,
R, such that

Ek = f ·2ρπR3Ṙ2, (1)

where ρ is the fluid density, and a dot denotes differentiating
with respect to time, we can generalise the Rayleigh equation
to

R̈ =
1
f

(
P−P∞

ρR

)
− 3

2
Ṙ2

R
− Ṙ

2 f
D f
Dt

, (2)

where f = 1 describes the normal Rayleigh equation. While
the Rayleigh equation itself is based on an incompressible fluid,
which would not allow any acoustic signal to be emitted, we
can still estimate such a signal by evaluating the Bernoulli
equation at a retarded time, such that the farfield signal at po-
sition Q is given by (Cox et al., 2004)

P(r, t) = P∞,Q −ρ
∂φ
∂ t

∣∣∣∣
t− r

c ,Q
(3)

ISOSURFACE-SHAPED BUBBLES

In order to be able to handle coalescing bubbles, we need a
smooth model for how the bubbles will be shaped, both when
apart and when they have merged to one bubble. There are,
of course many ways to create such a family of shapes, but it
seems logical that they should at least satisfy two basic cases.
When the separation distance is infinite, the bubbles should
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be spherical like we would expect a single bubble to be, and
when the separation distance is zero we should see one spher-
ical bubble with a volume equaling the combined volume of
two single bubbles. One way of doing this is to let the shapes
be isosurfaces of the velocity potential, φ , as is used by Barker
and Landrø (2013) to make a simple estimate of the bubble
time periods of air guns without having to solve any differen-
tial equation for the bubble wall motion. This means that the
surface is described as any point in the valid domain where
φ = C, for some constant C which has to be picked such that
the surface contains the correct volume. While this is not the
only possible way of describing the bubble surfaces, it con-
veniently makes the particle velocity at the bubble wall to be
normal to the wall itself, which is usually only approximated
by the introduction of corrections to the potential (Cox et al.,
2004).

However, using isosurfaces to describe the bubbles has a down-
side as well, which is the fact that the shapes themselves are
not easily described analytically (except for the two-bubble
case) and needs to be found numerically. To find the surface
for a given velocity potential, we then need to seek for the con-
stant value C from the bubble center out in enough directions
to adequately describe the shape, for instance by some spline
interpolation. Since the constant itself can not be given analyt-
ically, this will need to be found as well, so for a given volume
V we have to

1. Guess the value of C.

2. Determine the bubble surface by numerical seek in 3
dimensions (or fewer, if we have some symmetry).

3. Calculate the volume inside the surface.

4. Adjust our guess for C and return to step 2 if the vol-
ume is not sufficiently close to V .

where the whole process is improved by running a standard op-
timization routine. Figure 1 shows a set of general isosurfaces
for a two bubble system, described by

φ =− V̇
4πr

− V̇

4π
√

r2 +4b2 +4br cos(θ)
, (4)

where the origin is placed in the center of the rightmost bubble,
(r,θ) are the parameters used in a spherical coordinate system,
V̇ the volume derivative and 2b is the separation distance be-
tween the two centers.

However, it can be shown that the shape of the surfaces can
be generalised as a function of separation distance divided by

radius (in the sense of R =
( 3V

4π
) 1

3 ), which coincides with the
discovery made by Strandenes and Vaage (1992) that most in-
teraction effects in air gun clusters depend on a similar pa-
rameter, the only difference being that the radius they use is a
specific equilibrium radius, which is the radius at which the air
inside the bubble has hydrostatic pressure and a temperature
equal to the surrounding fluid.

This means that for a given volume, we can use a unit iso-
surface, and just scale that surface up to the desired volume.

Figure 1: A set of isosurfaces with a fixed separation distance
and differing volumes, displaying how the bubbles may merge
with this representation.
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Figure 2: Calculated energy curves, as function of separation
distance divided by radius, for 2-5 guns in a circular configu-
ration.
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Figure 3: Modeled relative bubble time period, along with
measured data from Strandenes and Vaage (1992).

Combining this with the fact that the energy relative to a sin-
gle bubble can be calculated as a function of the constant C
and the volume itself (Barker and Landrø,2013), it is possible
to pre-calculate the energy function required by Equation 1 at
specific volumes. By interpolating between these points, it is
then possible to do air bubble modeling with no significant in-
crease in the computation needed at run-time. Examples of
these energy curves for 2-5 guns in a circular configuration is
shown in Figure 2. The energy at infinite separation distance
asymptotically approaches the corresponding energy of a sin-
gle gun, and the energy at zero separation distance for n guns
is equal to one part in n of the energy of a gun with n times
the volume (the other parts of the energy being assigned to the
other bubbles). For the two bubble case, doubling the volume
will mean that the radius will be 2

1
3 the radius of a single bub-

ble and by combining with Equation 1, we have

E2 =
1
2
·2ρπ

(
2

1
3 R
)3(

2
1
3 Ṙ
)2

= 2
2
3 E1, (5)

and likewise, for an n bubble case En = n
2
3 E1.

Figure 3 shows the modeled relative bubble time period, calcu-
lated by using a Runge-Kutta 4(5) order ordinary differential
equation solver (Hairer et al., 2009) on Equation 2 using adi-
abatic expansion, compared with the experimental data-points
presented by Strandenes and Vaage (1992). An example of the
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Figure 4: The modeled effect of clustering to the spectrum. A
cluster consisting of two 40 cu.in. guns is compared to the sum
of two single 40 cu.in. guns. Both cases are at 5m depth.

effect on the spectrum is shown in Figure 4, where we have
compared a 40 cu.in. gun with a cluster containing 2 such
guns at a separation distance of 0.5 m, which is approximately
2 times the equilibrium radius. To get a realistic spectrum, a
mass transfer effect as described by Langhammer (1994) was
added to remove the infinite oscillation. We see that the first
low-frequency peak of the cluster is shifted to the left, and that
the maximum frequency of the single gun is approximately
1.23 times that of the cluster, which coincides with the appro-
priate ratio (2) in Figure 3.

DISCUSSION

From Figure 3 we see that we are able to obtain reasonable
bubble time period variations when modeling very small, and
even zero, separation distances, and the limit at zero is the
same as we would expect from one bubble with n times the vol-
ume. It is also evident that the modeled relative bubble time
period is not quite as accurate when the separation distance
divide by equilibrium radius is around 3. Since this is approxi-
mately the ratio where bubbles will coalesce during the expan-
sion phase, there are several reasons that might cause greater
error here.

First of all the separation distance in the modeling is kept con-
stant. While the separation of the air guns will be constant
when firing, the distance between the centers of the bubbles
usually are not. During the first expansion phase, the two bub-
bles will typically move slightly further apart due to the expan-
sion of the other bubble, and then the contraction will cause
the two bubbles to merge into one, and stays as one bubble for
the rest of the oscillations. Since the bubbles will be pushed
slightly away from each other, the lack of movement of the
bubbles might cause the modeling to behave as if the separa-
tion distance is smaller than it actually is during this phase,
which will cause the relative time period to increase and ex-
plain why it is overestimated for for values of separation dis-
tance divided by equilibrium radius above 2.5.

Correcting for this by incorporating movement, could then be
believed to underestimate the relative bubble time period for
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smaller separations. With respect to this, we should note that
since the Rayleigh equation will create an infinitely oscillat-
ing set of bubbles, bubbles which may have merged during
expansion might be separated again during contraction. This
is clearly an unphysical result, which would also be removed
by correctly modeling the bubble movement, and increase the
modeled relative bubble time periods for smaller separation
distances.

We should also note that when firing an actual air gun, the
bubble is not released separate from the gun itself, which will
cause a mismatch between radius and volume compared to our
model. Correcting for this, by for instance using a bigger ra-
dius as function of volume when calculating f , will also in-
crease the estimates for smaller separation distances, although
it should still be bounded by n

1
3 .

CONCLUSIONS

By using isosurfaces to represent the bubbles, and using an ex-
tended Rayleigh equation, we have shown that we can model
air bubbles with very small, and even zero, separation distance
and get a smooth transition between two completely separate
bubbles and one bubble of the double volume. The modeled
results for relative bubble time period seem physical and rea-
sonable compared to data. This smooth transition would not
have been possible by using spherical bubbles and a pressure-
wavefield interaction.

While isosurfaces are the surface of choice here, it is by no
means the only choice, and other choices of surfaces may be
better. This is specifically evident, when we look at the shapes
used, as they do not look like the bubbles created by an air
gun cluster during the first expansion phase, but look more
like the shapes of the contracting merged bubble. This could
for instance indicate that it might be preferable to increase the
allowed set of shapes.

We have not investigated the primary-to-bubble ratio or rel-
ative decay of primary amplitude. Modeling the primary-to-
bubble ratio requires some sort of energy loss, and the pri-
mary decay would require modeling the release of air into the
water, neither of which have been done here. Moreover, it
seems unlikely that the improved primary-to-bubble ratio ex-
perienced when clustering can be adequately modeled without
taking into account the movement of the bubble centers toward
each other, which requires an even further improved model of
bubble dynamics.

It should also not be forgotten that the basic equation here, the
Rayleigh equation, is the most basic equation for single bubble
dynamics, and that there exist incompressible models which
should be more physical. Still, we believe the general notion
of using isosurfaces, or other surfaces, in the way described
here should be possible to combine with more physical models,
and may be helpful in improving the modeling of big air gun
clusters.
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