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Summary 
 
We generalize the pseudo-spectral method for the acoustic 
wave equation to create analytical solutions to the constant 
velocity acoustic wave equation in an arbitrary number of 
space dimensions.  We accomplish this by modifying the 
Fourier Transform of the Laplacian operator so that it 
compensates exactly for the error due to the second-order 
finite-difference time marching scheme used in the 
conventional pseudo-spectral method.  Of more practical 
interest, we show that this modified or pseudo-Laplacian is 
a smoothly varying function of the parameters of the 
acoustic wave equation (velocity most importantly) and 
thus can be further generalized to create near-analytically-
accurate solutions for the variable velocity case. We call 
this new method the pseudo-analytical method.  We further 
show that by applying this approach to the concept of 
acoustic anisotropic wave propagation, we can create 
scalar-mode VTI and TTI wave equations that overcome 
the disadvantages of previously published methods for 
acoustic anisotropic wave propagation.  These methods 
should be ideal for forward modeling and reverse time 
migration applications. 
 
Introduction 
 
The pseudo-spectral method (Reshef et al., 1988) is 
generally considered an accurate method for solving 
equations such as the acoustic or elastic wave equations.  
However, it still suffers from errors, namely grid 
dispersion, due to the fact that second-order (or sometimes 
higher-order) finite differences are applied on the time axis.  
Etgen (2007) describes a technique built upon the work of 
Holberg (1987) that includes the effect of second-order 
time discretization with finite time-step size to partially 
compensate errors due to space discretization, thus creating 
a globally optimized finite-difference scheme.  However, 
optimized finite-difference techniques still must use some 
degree of oversampling compared to the Nyquist limit.  
 
Any technique that strives for “perfect” accuracy either has 
to have no error in both the time and space discretizations, 
or have errors in both that cancel each other exactly. Tal-
Ezer et al. (1987) described an approach based on the 
former by using pseudo-spectral space derivatives coupled 
with an orthogonal polynomial expansion in time.  While 
this method is accurate, it is somewhat cumbersome to code 
and has seen little industrial use to our knowledge.  Our 
approach is of the later type; we use our freedom to modify 
the wavenumber response of the Laplacian, or other  spatial 
derivatives that we need,  directly in the wavenumber 

domain portion of a pseudo-spectral-like method to cancel 
the error caused by second-order finite-difference time 
marching. 
 
The pseudo-analytical method 
 
The accuracy of a numerical wave propagation scheme can 
be determined in the constant wave-speed case by finding 
the expression of the Fourier Transform of the method and 
solving that expression for temporal frequency as a 
function of all the other variables.  Equation 1 gives an 
expression for the Fourier Transform of a second-order 
time-marching solution to the acoustic wave equation 
where we’ve left the details of the spatial difference 
method generic: 
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We rearrange this expression to give temporal frequency as 
a function of velocity, the spatial Fourier Transform of the 
spatial differential operator and the time step size.  
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Then, we compute phase velocity as a function of 
wavenumber by dividing temporal frequency by the 
magnitude of the wavenumber vector.  
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Written this way, we find the numerical phase velocity of 
an acoustic wave propagation algorithm once we know the 
time step size and the spatial Fourier Transform of the 
implementation of the spatial differential operators.  
Indeed, if we wished to know the numerical phase velocity 

for a pseudo-spectral method, we’d simply use k
v 2

−  for 

)(kF
v

. 
 
The key innovation is to realize that we can engineer 
whatever phase velocity we wish simply by rearranging the 
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Pseudo-analytical wave propagation 

expression in equation 3 to solve for the Fourier Transform 
of the spatial differential operators of the wave equation. 
 
 
 
 
For the acoustic isotropic wave equation, v is set to a 
constant, the correct phase velocity that we wish to have 

the scheme produce.  This  is very similar to, but not 
exactly equal to the Fourier transform of the Laplacian 

operator 

)(kF
v

k
v 2

− .  In the limit as time step size approaches 

zero would approach the Fourier Transform of the 
Laplacian.  This new operator is no longer a differential 
operator; it is a pseudo-differential operator. 
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This result is interesting, in that it gives a recipe for 
computing the analytical solution to the acoustic wave 
equation in an arbitrary-dimensional constant velocity 
periodic domain, (periodic due to the FFT), with a simple 
second-order time-marching scheme.  Figure 1 shows the 
spatial Fourier Transform of the Laplacian (a) (which 
would be used in a pseudo-spectral method), the spatial 

Fourier Transform of the pseudo Laplacian )(kF
v

 for a 
velocity of 1500m/s (b) and the spatial Fourier Transform 

of the pseudo Laplacian  for a velocity of 3300 m/s 
(c) given a time step size of .001 seconds.  The Courant 
numbers ( v dt/min(dx,dz) ) for these cases are 0.15 and 
0.33 respectively.  Observe that the Fourier Transforms of 
the pseudo-Laplacians differ from the standard Laplacian 
more as the Courant number increases.  
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Of course, this result so far isn’t very interesting for 
computing industrial wave simulations since we are usually 
interested in variable velocity media.  The next key 
realization is that while the pseudo-Laplacian is a function 
of velocity and grid sizes, it is a slowly varying and regular 
function of those parameters.   
 
Figure 2 (a) shows the pseudo-Laplacian for an 
intermediate Courant number = 0.22, created by 
interpolating the pseudo-Laplacians at 1500 m/s and 
3300m/s.  Figure 2(b) shows the difference between the 
“exact” pseudo-Laplacian for this Courant number (using 
equation 4) and the interpolated one scaled up a factor of 
100.  The error is essentially trivial. 
 
The fact that the pseudo-Laplacian for a velocity v can be 
interpolated from pseudo-Laplacians v1< v < v2 in the 
wavenumber domain leads directly to a straightforward 
algorithm for accurate time marching in a variable velocity 

medium.  Create pseudo-Laplacians for vmin and vmax. At 
each time step apply them in the wavenumber domain to 
the current value of the wavefield. Inverse transform these 
wavefields back to the space domain creating 2 reference 
versions of the pseudo-Laplacian applied wavefields.  At 
each point in the computational domain compute the 
pseudo- Laplacian wavefield appropriate to the local 
velocity from the 2 reference wavefields. Perform the usual 
second-order time update. 
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Figure 3 (a) shows a velocity model with smooth variation  
and the impulse responses (with magnified insets) of the 
conventional pseudo-spectral method (b) and the proposed 
pseudo-analytical algorithm (c).  The grid dispersion in 
figure 3 (b) is purely due to the error in second-order time-
differencing that is not compensated because we use the 

perfect space derivative operator k
v 2

−  .  Figure 4 (c) is 

dispersion free since the spatially-varying pseudo-
Laplacian compensates, almost exactly, everywhere, for the 
error in caused by second-order time marching. 
 
The potential of this approach is not limited to isotropic 
acoustic wave propagation alone.  Anisotropic P wave 
propagation is usually accomplished  (Alkhalifa, 2000) by 
taking the elastic wave equation and deriving a differential 
equation where the pseudo-shear-wave velocity is set to 
zero for some angle of propagation.  The result is a vector 
system of differential equations that will generate a pseudo-
P wave solution that is a reasonable approximation to the P-
wave solution in an elastic anisotropic medium (Fletcher et 
al., 2008).  The drawback to this technique is that we have 
to solve a second-order vector wave equation which must 
generate an additional solution along with the pseudo P 
waves we are interested in.  These spurious and undesired 
solutions can lead to noise and artifacts in a wave 
propagation experiment.  This is particularly annoying 
when we are using the method for reverse time migration. 
  
If we take equation 4, and generalize it to allow velocity to 
vary with propagation direction (which is directly described 
in the wavenumber domain) we can derive a scalar second-
order in time pseudo-differential equation for anisotropic P 
wave propagation.  Equation 5 gives a simple example of 
one of the possible expressions for P wave phase velocity 
in a VTI medium (Harlan and Lazear, 1998): 
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Plugging this expression into equation 4 leads to a pseudo-
analytical wave propagation algorithm for P waves in a 
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Pseudo-analytical wave propagation 

VTI medium parameterized by horizontal , NMO, and 
vertical velocity. 
 
 
 
 
 
 
Practically, direct implementation of equation 6 would 
require pseudo-Laplacians to be created for a range of all 3 
velocity parameters and used through interpolation to 
create the correct operator at each point according to its 
local velocity values.  With 3 velocity parameters and 2 
reference velocities each, 8 inverse FFT’s would have to be 
computed at each time step. We can sidestep some of that 
computational burden by dissecting the required pseudo-
Laplacian of equation 6 into 3 constituent parts, the 

analogues of k , , and 
z

2
k x

2
kkk rxz

222
. Rather than 

applying the applying the entire pseudo-Laplacian, we 
apply these 3 operators and then combine them as a 
function of velocity to create the effect of the variable 
velocity pseudo-differential operator that propagates 
anisotropic P waves.  Figure 4 shows a wavefront 
computed in a model like the one in Figure 3, but now for a 
VTI medium.  Note that there are no spurious wave modes. 
 
Finally, the derivation above for scalar VTI anisotropic P 
waves can be extended to TTI media by rewriting equation 
5 recognizing that we need to convert the differential and 
pseudo-differential operators above into directional 
differential operators  (through vector calculus) along and 
perpendicular to the symmetry axis. Fortunately, the 
direction cosines of the symmetry axis factor out of the 
expression in a way that they are purely scalars applied in 
the same way that the velocity is applied in the pseudo-
spectral method.  Figure 5 shows a wavefront in a medium 
with the same wave speeds as in Figure 4, but with a 
spatially variable symmetry axis (note the “tilt” in the 
impulse response). 
 
Conclusions 
 
It is possible to modify the pseudo-spectral method to 
create a time-marching solution to acoustic and other wave 
equations that has analytic or near-analytic accuracy. In 
addition, this concept of a “pseudo-Laplacian” allows the 
creation of a purely scalar anisotropic wave equation with 
essentially whatever symmetry one desires. 
 
This technique is effective and efficient any time the 
pseudo-spectral technique is viable, in particular when one 
seeks accurate solutions of wave equations on sparse grids. 
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