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Summary 
 
Velocity model building for seismic imaging is commonly 
performed with tomography and full wave inversion (FWI). 
Both techniques are time consuming and need significant 
human intervention. Machine learning has been introduced 
into seismic imaging with the goal of reproduce the success 
earned in other fields. Due to the complexity of the earth, 
and the geological uniqueness of any one location, 
determining the appropriate training data can be challenging.  
Directly building a 3D velocity model by machine learning 
still has some way to go. Instead of letting machine learning 
do all the work, it may be more practical to only perform 
machine learning on the portion of model building that 
requires heavy human intervention. In this paper, we present 
a method that builds the velocity model automatically by 
combining novel machine learning with the mature velocity 
model building techniques. 
 
Introduction 
 
Seismic imaging needs a velocity model to map the recorded 
seismic signals to a subsurface image. Tomography and FWI 
are the most common techniques for building such models. 
Tomography iteratively updates the velocity model and 
human analysis and interpretation are usually needed for 
each update. FWI is computationally expensive and its 
preparation may need significant human involvement too.  
 
In recent years, machine learning has been applied to fields 
including computer vision, speech recognition, natural 
language processing, audio recognition, social network 
filtering, machine translation, bioinformatics, drug design, 
medical image analysis, material inspection and board game 
programs, where they have produced results comparable to 
and in some cases surpassing expert human performance. 
Inspired by such successes, there have been numerous 
attempts to bring machine learning into seismic imaging 
(Yang and Ma, 2019; Zheng et. al., 2019). Araya-Polo et. al. 
(2018) and Øye and Dahl (2019) tried to build a velocity 
model directly from seismic shot gathers using machine 
learning. Although they show encouraging results, the 
precision and resolution of the estimated velocity models are 
not on par with state of the art velocity model building 
techniques such as reflection tomography and FWI (Øye and 
Dahl, 2019). One of the difficulties that prevent people from 
reproducing the successes in other fields is the lack of 
training data that represents the complex earth geology. 
 
It might be more practical to utilize machine learning to 
handle the steps in model building that requires heavy 
human intervention while taking advantage of current 

mature model building techniques. In reflection 
tomography, residual moveout (RMO) picking typically 
requires significant parameter tuning and even manually 
editing out bad RMO picks, such as multiples and 
refractions. The successes of machine learning classification 
in other fields, for example, image recognition (Krizhevsky 
et. al. 2012), suggest we may be able to employ machine 
learning to identify and remove the bad RMO picks. In the 
next section, we will discuss an automatic velocity model 
building method that uses machine learning for RMO pick 
recognition. 
 
Method 
 
Conventional reflection tomography (Zhou et. al. 2008, 
2009) is a successive model building technique with multiple 
steps. Starting with the initial seismic migration gathers and 
the initial velocity model, reflection tomography loops 
through the following steps (Figure 1): RMO, gamma 
scanning and event picking that picks the valid RMOs from 
the current migration gathers; Update, ray-tracing and 
inversion that converts the picked RMOs into velocity 
updates; and Migration on the current velocity model. We 
can encapsulate all these steps into one box (Figure 1) and 
automate the tomographic model building process. The 
tomography loop becomes internal and several separate 
modules can become one. Migration does not usually need 
any parameter changes except the velocity input. As Zhou 
et. al. (2009) showed, the model building process starts with 
larger smoothing lengths to solve for larger wavelength 
velocity features and gradually reduces in later iterations for 
small velocity variations and higher resolution. Such 
iteration dependent parameterization can be preset and there 
is no need to change this during the process. 
 
The RMO step, however, usually requires human 
intervention for parameter tuning and conditioning, even 
manual editing in some extreme cases. This not only breaks 
down the automation but can also incur a long turnaround 
time. Automatically scanned and picked RMOs normally 
contain some bad picks such as multiples that we do not want 
to use in the subsequent velocity updating. By adjusting 
thresholds such as semblance and gamma range, bad picks 
can be largely reduced but a significant amount may remain. 
This is largely data dependent. Harsher thresholds remove 
more bad RMO picks but often also eliminate good ones. 
Human identification through experience is currently the 
optimal approach, but is time consuming. With the help of 
machine learning, we can create a small subset of the 
migration gathers and scan and pick RMOs automatically by 
thresholding. Then we manually correct what the automatic 
process does wrong and the resulting data is used in a 
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Automatic velocity model building with machine learning 

training process. The resulting trained model is then 
provided to the automatic velocity model building module as 
a parameter and the module runs without human interaction. 
 

 
Figure 1: The automatic velocity model building diagram. 
All model building steps are encapsulated in a single box. 
 
Identifying bad RMO picks with machine learning using a 
training process is a form of supervised classification. It is 
implausible to cut out the local event image for the machine 
to learn and identify because very often the surrounding 
information is also needed. For example, one may determine 
an event is a multiple because it differs from events around 
it in curvature. If we only extract an event itself, we will have 
difficulties to tell if it is a multiple or not, especially when 
there are limited offsets. Therefore, instead of extracting 
event images, we use following features: spatial coordinates 
(x, y, and z), scanned gamma value, peak semblance and 
local reflector dip. All feature values are normalized of the 
range of zero to one. 
 
Field examples 
 
The proposed method has been implemented with a 1D 
migration engine together with a 1D velocity update 
operator. The machine learning components were built with 
Python using Scikit-Learn and TensorFlow packages. 
Random Forest and Neural Network have been chosen as 
options for RMO pick classification. The automatic velocity 
model building has three options: Prep, Train and 

Production.  Prep scans and automatically picks RMOs on a 
small subset of gathers with user defined thresholds. Then 
the user manually corrects the errors that exist in the output 
of Prep. The corrected data will be the training data that 
serves as the input for Train.  After Train finishes training, 
the trained model is supplied, together with the full gathers, 
to Production for the velocity model building. The 
Production job is fully automated and contains all internal 
model building steps (Figure 1), of which step RMO is 
equipped with machine learning.  Such jobs are typically 
parameterized to run several iterations or until a satisfactory 
velocity model is obtained. 
 
A small dataset from North Sea 
 
The first experiment was conducted on a small dataset from 
the North Sea. It contains only 12 inlines and 841 crosslines. 
The reason to test on such a small dataset is that we could 
quickly test some hyperparameters. In machine learning, a 
hyperparameter is a parameter whose value is set before the 
learning process begins. When we found the optimal 
hyperparameters values, we set them to be permanent. The 
migration gathers have an offset range from 596 m to 7596 
m with a 200 m increment. As shown in Figure 2, the entire 
deep region is contaminated with multiples. We chose the 
first, the middle and the last inlines for training. For each 
training inline, we selected 42 gathers out of the total 841. 
The total number of gathers for training is 126. Since the 
thresholds defined in the job helped correctly pick the 
majority of events, it only took a few minutes to edit the ones 
that were wrongly classified. We did not have the reflector 
dip information and zero dips were assumed. The Production 
job was parameterized to run only one iteration. 
 
First we tested the Random Forest classifier and it gave 
100% accuracy on the training data and the reported 
importance for each feature is shown in Table 1.  Features z 
and gamma dominate in this training experiment because 
almost all bad picks are in the deep region and they are all 
multiples that have larger gamma values. As the dips for all 
events are the same, they have zero importance. 
 

Rank Feature Importance 
1 z 0.538868 
2 gamma 0.413296 
3 semblance 0.026730 
4 x 0.013669 
5 y 0.007438 
6 dip x 0.000000 
7 dip y 0.000000 

 

Table 1: Feature importance for the small North Sea dataset 
experiment. 
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Automatic velocity model building with machine learning 

The trained Random Forest model was supplied to the 
Production job on the whole dataset and it classified the 
picks as desired (Figure 2b), comparable to the training data 
(Figure 2a). Because all deep RMO picks were classified as 
bad and not used for velocity updating, the velocity update 
in the deep region is zero (Figure 3). 

 

 
 
Figure 2: Manually edited training data (a) for the small 
North Sea dataset experiment. Classified RMO picks on the 
whole dataset by the Random Forest classifier (b) and the 
Neural Network classifier (c). Green represents good picks 
and red means bad picks. (a) shows gathers from three 
training inlines while (b) and (c) contain same gathers from 
one inline. 

 

 

Figure 3: Velocity update for the small North Sea dataset. RMO 
picking used the Random Forest classifier. 

 

The same training data was also fed to the Neural Network 
classifier. There are many hyperparameters and we tested the 
number of layers, epochs and different activations. We found 
a 2-layer network yielded similar result with networks of 3, 
4, and 5 layers and 2000 epochs was sufficient. We also 

chose relu as the activation for the first layer and softmax for 
the second. One of the advantages of softmax is that it gives 
the probability for each category, which gives the user a 
chance to make the final decision. For example, if a RMO 
pick has a 51% probability to be a good one and 49% chance 
to be a bad one, the user may decide not to use it for velocity 
updating. Adam was chosen as the optimizer and other 
optimizers were not tested. The Neural Network training 
reported an accuracy of 99% on the training data. The 
classified RMO picks (Figure 2c) are similar to the result 
from the Random Forest classifier (Figure 2b), which in turn 
resulted in a similar velocity update. 

 

North Sea example 2 

The implemented automatic model building method has also 
been apllied on another larger North Sea dataset. The initial 
migration gathers have dimensions of 721 inlines, 1057 
crosslines and 40 offsets. As shown in Figure 4, the shallow 
portion of the gathers has mostly primary events, which is 
similar to the previous example. However, in the deeper 
data, there are a lot of multiples, but some primairies can be 
identified. We also used zeros for all reflector dips since 
such information was not available. 

 
Rank Feature Importance 
1 z 0.430944 
2 gamma 0.277258 
3 semblance 0.171127 
4 x 0.100172 
5 y 0.020500 
6 dip x 0.000000 
7 dip y 0.000000 

Table 2: Feature importance for the larger North Sea dataset 
experiment. 

 

As the first example, we chose a coarse grid of 3 inlines and 
80 crosslines for the training data. Due to the complexity of 
the RMO, manually correcting the classifications by 
thresholding took about 30 minutes. An experienced imager 
would have done the work more efficiently though. The 
Production job was parameterized to run 5 iterations on the 
whole dataset. Again, the Random Forest classifier achieved 
a 100 % accuracy on the training data. However, some 
changes were seen in the reported feature importance (Table 
2). Although z and gamma still rank 1st and 2nd, but they are 
not as dominant as in previous example. The semblance and 
coordinates x and y also played siginificant roles. 

As shown in Figure 4b, the Random Forest classifier did a 
reasonable job and most RMO picks were correctly 
classified. After 5 iterations of automatic updating, the 
Production run of the Random Forest classifier greatly 
flattened the seismic gathers (Figure 5b)  compared with the 
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Automatic velocity model building with machine learning 

initial migration gathers (Figure 5a). The resulting velocity  
update (Figure 6)  is consistent with the gather changes. 

When the same training data was provided to the Neural 
Network classifier, it reported a 86 % accuracy on the 
training data, significantly lower than the Random Forest 
classifier.  With the Neural Network trained model, the 
classifier performed poorly (Figure 4c). It did a fair job in 
the shallow region but struggled in the deep by classifying 
most the deep picks as bad ones. This Production run then 
was abandoned. The inferior perfomance suggests the 
hyperparameters based upon the experiments on the smaller 
dataset are not transferable for this dataset and further tuning 
is needed to obtain a new set of optimal hyperparameter 
values.  

 

 

Figure 4: The training data for the larger North Sea dataset (a) and 
the first iteration RMO pick classifications by the Random Forest 
classifier (b) and the Neural Network classifier (c).  

 

Figure 5: Migration gathers: a) initial and b) after 5 iterations of 
automatic velocity updating with the Random Forest classifier. 

 

 

Figure 6: Velocity update after 5 iterations of automatic updating. 

 

Conclusions and discussions 
 
We have presented an automatic velocity model building 
method that combines mature model building techniques and 
a novel machine learning algorithm. Machine learning 
reduces human intervention and may enable the automation 
of velocity model building. The second field example shows 
that the Random Forest model can be trained once and 
applied for all iteration without the need of re-training. It 
means the characteristics of bad picks, for example, 
multiples, remain stationary. 
 
The failure of the Neural Network classifier in the second 
example does not mean it is not a good machine learning 
technique for classifying RMO picks. It probably indicates 
that the hyperparameters are dataset dependent and they 
need to be re-tuned. On the other hand, it seems the Random 
Forest classifier is simpler but works reliably for identifying 
bad RMO picks. As Płoński (2019) suggested, when 
working with tubular data, it is better to start with Random 
Forest. If you are not satisfied with the model performance 
you should try to tune and train a Neural Network. There are 
many hyperparameters which can be tuned in a Neural 
Network and if you have enough knowledge and experience 
you can obtain very good results with Neural Networks. 
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