
Automatic velocity model building with machine learning
Chaoguang Zhou* and Samuel Brown, PGS

Summary

Velocity model building for seismic imaging is commonly
performed with tomography and full wave inversion (FWI).
Both techniques are time consuming and need significant
human intervention. Machine learning has been introduced
into seismic imaging with the goal of reproduce the success
earned in other fields. Due to the complexity of the earth,
and the geological uniqueness of any one location,
determining the appropriate training data can be challenging.
Directly building a 3D velocity model by machine learning
still has some way to go. Instead of letting machine learning
do all the work, it may be more practical to only perform
machine learning on the portion of model building that
requires heavy human intervention. In this paper, we present
a method that builds the velocity model automatically by
combining novel machine learning with the mature velocity
model building techniques.

Introduction

Seismic imaging needs a velocity model to map the recorded
seismic signals to a subsurface image. Tomography and FWI
are the most common techniques for building such models.
Tomography iteratively updates the velocity model and
human analysis and interpretation are usually needed for
each update. FWI is computationally expensive and its
preparation may need significant human involvement too.

In recent years, machine learning has been applied to fields
including computer vision, speech recognition, natural
language processing, audio recognition, social network
filtering, machine translation, bioinformatics, drug design,
medical image analysis, material inspection and board game
programs, where they have produced results comparable to
and in some cases surpassing expert human performance.
Inspired by such successes, there have been numerous
attempts to bring machine learning into seismic imaging
(Yang and Ma, 2019; Zheng et. al., 2019). Araya-Polo et. al.
(2018) and Øye and Dahl (2019) tried to build a velocity
model directly from seismic shot gathers using machine
learning. Although they show encouraging results, the
precision and resolution of the estimated velocity models are
not on par with state of the art velocity model building
techniques such as reflection tomography and FWI (Øye and
Dahl, 2019). One of the difficulties that prevent people from
reproducing the successes in other fields is the lack of
training data that represents the complex earth geology.

It might be more practical to utilize machine learning to
handle the steps in model building that requires heavy
human intervention while taking advantage of current

mature model building techniques. In reflection
tomography, residual moveout (RMO) picking typically
requires significant parameter tuning and even manually
editing out bad RMO picks, such as multiples and
refractions. The successes of machine learning classification
in other fields, for example, image recognition (Krizhevsky
et. al. 2012), suggest we may be able to employ machine
learning to identify and remove the bad RMO picks. In the
next section, we will discuss an automatic velocity model
building method that uses machine learning for RMO pick
recognition.

Method

Conventional reflection tomography (Zhou et. al. 2008,
2009) is a successive model building technique with multiple
steps. Starting with the initial seismic migration gathers and
the initial velocity model, reflection tomography loops
through the following steps (Figure 1): RMO, gamma
scanning and event picking that picks the valid RMOs from
the current migration gathers; Update, ray-tracing and
inversion that converts the picked RMOs into velocity
updates; and Migration on the current velocity model. We
can encapsulate all these steps into one box (Figure 1) and
automate the tomographic model building process. The
tomography loop becomes internal and several separate
modules can become one. Migration does not usually need
any parameter changes except the velocity input. As Zhou
et. al. (2009) showed, the model building process starts with
larger smoothing lengths to solve for larger wavelength
velocity features and gradually reduces in later iterations for
small velocity variations and higher resolution. Such
iteration dependent parameterization can be preset and there
is no need to change this during the process.

The RMO step, however, usually requires human
intervention for parameter tuning and conditioning, even
manual editing in some extreme cases. This not only breaks
down the automation but can also incur a long turnaround
time. Automatically scanned and picked RMOs normally
contain some bad picks such as multiples that we do not want
to use in the subsequent velocity updating. By adjusting
thresholds such as semblance and gamma range, bad picks
can be largely reduced but a significant amount may remain.
This is largely data dependent. Harsher thresholds remove
more bad RMO picks but often also eliminate good ones.
Human identification through experience is currently the
optimal approach, but is time consuming. With the help of
machine learning, we can create a small subset of the
migration gathers and scan and pick RMOs automatically by
thresholding. Then we manually correct what the automatic
process does wrong and the resulting data is used in a

10.1190/segam2020-3427836.1
Page 1596

© 2020 Society of Exploration Geophysicists
SEG International Exposition and 90th Annual Meeting

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 4

9.
25

5.
53

.1
78

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
20

-3
42

78
36

.1

Automatic velocity model building with machine learning

training process. The resulting trained model is then
provided to the automatic velocity model building module as
a parameter and the module runs without human interaction.

Figure 1: The automatic velocity model building diagram.
All model building steps are encapsulated in a single box.

Identifying bad RMO picks with machine learning using a
training process is a form of supervised classification. It is
implausible to cut out the local event image for the machine
to learn and identify because very often the surrounding
information is also needed. For example, one may determine
an event is a multiple because it differs from events around
it in curvature. If we only extract an event itself, we will have
difficulties to tell if it is a multiple or not, especially when
there are limited offsets. Therefore, instead of extracting
event images, we use following features: spatial coordinates
(x, y, and z), scanned gamma value, peak semblance and
local reflector dip. All feature values are normalized of the
range of zero to one.

Field examples

The proposed method has been implemented with a 1D
migration engine together with a 1D velocity update
operator. The machine learning components were built with
Python using Scikit-Learn and TensorFlow packages.
Random Forest and Neural Network have been chosen as
options for RMO pick classification. The automatic velocity
model building has three options: Prep, Train and

Production. Prep scans and automatically picks RMOs on a
small subset of gathers with user defined thresholds. Then
the user manually corrects the errors that exist in the output
of Prep. The corrected data will be the training data that
serves as the input for Train. After Train finishes training,
the trained model is supplied, together with the full gathers,
to Production for the velocity model building. The
Production job is fully automated and contains all internal
model building steps (Figure 1), of which step RMO is
equipped with machine learning. Such jobs are typically
parameterized to run several iterations or until a satisfactory
velocity model is obtained.

A small dataset from North Sea

The first experiment was conducted on a small dataset from
the North Sea. It contains only 12 inlines and 841 crosslines.
The reason to test on such a small dataset is that we could
quickly test some hyperparameters. In machine learning, a
hyperparameter is a parameter whose value is set before the
learning process begins. When we found the optimal
hyperparameters values, we set them to be permanent. The
migration gathers have an offset range from 596 m to 7596
m with a 200 m increment. As shown in Figure 2, the entire
deep region is contaminated with multiples. We chose the
first, the middle and the last inlines for training. For each
training inline, we selected 42 gathers out of the total 841.
The total number of gathers for training is 126. Since the
thresholds defined in the job helped correctly pick the
majority of events, it only took a few minutes to edit the ones
that were wrongly classified. We did not have the reflector
dip information and zero dips were assumed. The Production
job was parameterized to run only one iteration.

First we tested the Random Forest classifier and it gave
100% accuracy on the training data and the reported
importance for each feature is shown in Table 1. Features z
and gamma dominate in this training experiment because
almost all bad picks are in the deep region and they are all
multiples that have larger gamma values. As the dips for all
events are the same, they have zero importance.

Rank Feature Importance
1 z 0.538868
2 gamma 0.413296
3 semblance 0.026730
4 x 0.013669
5 y 0.007438
6 dip x 0.000000
7 dip y 0.000000

Table 1: Feature importance for the small North Sea dataset
experiment.

10.1190/segam2020-3427836.1
Page 1597

© 2020 Society of Exploration Geophysicists
SEG International Exposition and 90th Annual Meeting

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 4

9.
25

5.
53

.1
78

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
20

-3
42

78
36

.1

Automatic velocity model building with machine learning

The trained Random Forest model was supplied to the
Production job on the whole dataset and it classified the
picks as desired (Figure 2b), comparable to the training data
(Figure 2a). Because all deep RMO picks were classified as
bad and not used for velocity updating, the velocity update
in the deep region is zero (Figure 3).

Figure 2: Manually edited training data (a) for the small
North Sea dataset experiment. Classified RMO picks on the
whole dataset by the Random Forest classifier (b) and the
Neural Network classifier (c). Green represents good picks
and red means bad picks. (a) shows gathers from three
training inlines while (b) and (c) contain same gathers from
one inline.

Figure 3: Velocity update for the small North Sea dataset. RMO
picking used the Random Forest classifier.

The same training data was also fed to the Neural Network
classifier. There are many hyperparameters and we tested the
number of layers, epochs and different activations. We found
a 2-layer network yielded similar result with networks of 3,
4, and 5 layers and 2000 epochs was sufficient. We also

chose relu as the activation for the first layer and softmax for
the second. One of the advantages of softmax is that it gives
the probability for each category, which gives the user a
chance to make the final decision. For example, if a RMO
pick has a 51% probability to be a good one and 49% chance
to be a bad one, the user may decide not to use it for velocity
updating. Adam was chosen as the optimizer and other
optimizers were not tested. The Neural Network training
reported an accuracy of 99% on the training data. The
classified RMO picks (Figure 2c) are similar to the result
from the Random Forest classifier (Figure 2b), which in turn
resulted in a similar velocity update.

North Sea example 2

The implemented automatic model building method has also
been apllied on another larger North Sea dataset. The initial
migration gathers have dimensions of 721 inlines, 1057
crosslines and 40 offsets. As shown in Figure 4, the shallow
portion of the gathers has mostly primary events, which is
similar to the previous example. However, in the deeper
data, there are a lot of multiples, but some primairies can be
identified. We also used zeros for all reflector dips since
such information was not available.

Rank Feature Importance
1 z 0.430944
2 gamma 0.277258
3 semblance 0.171127
4 x 0.100172
5 y 0.020500
6 dip x 0.000000
7 dip y 0.000000

Table 2: Feature importance for the larger North Sea dataset
experiment.

As the first example, we chose a coarse grid of 3 inlines and
80 crosslines for the training data. Due to the complexity of
the RMO, manually correcting the classifications by
thresholding took about 30 minutes. An experienced imager
would have done the work more efficiently though. The
Production job was parameterized to run 5 iterations on the
whole dataset. Again, the Random Forest classifier achieved
a 100 % accuracy on the training data. However, some
changes were seen in the reported feature importance (Table
2). Although z and gamma still rank 1st and 2nd, but they are
not as dominant as in previous example. The semblance and
coordinates x and y also played siginificant roles.

As shown in Figure 4b, the Random Forest classifier did a
reasonable job and most RMO picks were correctly
classified. After 5 iterations of automatic updating, the
Production run of the Random Forest classifier greatly
flattened the seismic gathers (Figure 5b) compared with the

10.1190/segam2020-3427836.1
Page 1598

© 2020 Society of Exploration Geophysicists
SEG International Exposition and 90th Annual Meeting

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 4

9.
25

5.
53

.1
78

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
20

-3
42

78
36

.1

Automatic velocity model building with machine learning

initial migration gathers (Figure 5a). The resulting velocity
update (Figure 6) is consistent with the gather changes.

When the same training data was provided to the Neural
Network classifier, it reported a 86 % accuracy on the
training data, significantly lower than the Random Forest
classifier. With the Neural Network trained model, the
classifier performed poorly (Figure 4c). It did a fair job in
the shallow region but struggled in the deep by classifying
most the deep picks as bad ones. This Production run then
was abandoned. The inferior perfomance suggests the
hyperparameters based upon the experiments on the smaller
dataset are not transferable for this dataset and further tuning
is needed to obtain a new set of optimal hyperparameter
values.

Figure 4: The training data for the larger North Sea dataset (a) and
the first iteration RMO pick classifications by the Random Forest
classifier (b) and the Neural Network classifier (c).

Figure 5: Migration gathers: a) initial and b) after 5 iterations of
automatic velocity updating with the Random Forest classifier.

Figure 6: Velocity update after 5 iterations of automatic updating.

Conclusions and discussions

We have presented an automatic velocity model building
method that combines mature model building techniques and
a novel machine learning algorithm. Machine learning
reduces human intervention and may enable the automation
of velocity model building. The second field example shows
that the Random Forest model can be trained once and
applied for all iteration without the need of re-training. It
means the characteristics of bad picks, for example,
multiples, remain stationary.

The failure of the Neural Network classifier in the second
example does not mean it is not a good machine learning
technique for classifying RMO picks. It probably indicates
that the hyperparameters are dataset dependent and they
need to be re-tuned. On the other hand, it seems the Random
Forest classifier is simpler but works reliably for identifying
bad RMO picks. As Płoński (2019) suggested, when
working with tubular data, it is better to start with Random
Forest. If you are not satisfied with the model performance
you should try to tune and train a Neural Network. There are
many hyperparameters which can be tuned in a Neural
Network and if you have enough knowledge and experience
you can obtain very good results with Neural Networks.

Acknowledgements

The authors thank PGS for the permission to publish this
paper and thank colleagues Øystein Korsmo and Tashi
Tshering for providing the testing data.

10.1190/segam2020-3427836.1
Page 1599

© 2020 Society of Exploration Geophysicists
SEG International Exposition and 90th Annual Meeting

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 4

9.
25

5.
53

.1
78

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
20

-3
42

78
36

.1

REFERENCES

Araya-Polo, M., J. Jennings, A. Adler and T. Dahlke, 2018, Deep-learning tomography: The Leading Edge, 37, 58–66, doi: 10.1190/tle37010058.1.
Krizhevsky, A., I. Sutskever and G. Hinton, 2012, ImageNet classification with deep Convolutional Neural Networks: Neural Information Processing
Systems.

Øye, O. K. and E.K. Dahl, 2019, Velocity model building from raw shot gathers using machine learning: Second EAGE/PESGB Workshop on
Velocities, 1–3.

Plonski, P., 2019, Random Forest vs Neural Network (classification): https://www.kdnuggets.com/2019/06/random-forest-vs-neural-network.html.
Yang, F., and J. Ma, 2019, Deep-learning inversion: A next-generation seismic velocity model building method: Geophysics, 84, no. 4, R583–R599,
doi: 10.1190/geo2018-0249.1.

Zheng, Y., Q. Zhang, A. Yusifov and Y. Shi, 2019, Applications of supervised deep learning for seismic interpretation and inversion: The Leading
Edge, 38, 526–533, doi: 10.1190/tle38070526.1.

Zhou, C., S. Brandsberg-Dahl, and J. Jiao, 2009, A continuation approach to regularize the reflection tomography with a 3D Gaussian filter: 71st
Conference and Exhibition, EAGE, Expanded Abstracts, U031.

Zhou, C., J. Ramos-Martinez, S. Lin, J. Jiao, and S. Brandsberg-Dahl, 2008, True geometry tomography for velocity model building with applications
to WATS seismic data: 78th Annual SEG Meeting, Expanded Abstracts, 3260–3264, doi: 10.1190/1.3064022.

10.1190/segam2020-3427836.1
Page 1600

© 2020 Society of Exploration Geophysicists
SEG International Exposition and 90th Annual Meeting

D
ow

nl
oa

de
d

09
/3

0/
20

 to
 4

9.
25

5.
53

.1
78

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
S

E
G

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
20

-3
42

78
36

.1

https://www.kdnuggets.com/2019/06/random-forest-vs-neural-network.html
https://www.kdnuggets.com/2019/06/random-forest-vs-neural-network.html
https://www.kdnuggets.com/2019/06/random-forest-vs-neural-network.html
https://www.kdnuggets.com/2019/06/random-forest-vs-neural-network.html

	3427836.pdf
	segam2020-3427836.1.pdf

