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Back-Propagating into the Future 
Least-Squares Migration (LSM), Full Waveform Inversion (FWI) and 
Neural Network Training: Imaging and Characterization by Inversion 

I discuss the important similarities and distinctions between RTM (Reverse Time 
Migration), LS-RTM and FWI, and also relate their fundamental reliance upon back-
projection to Deep Neural Network training used in many machine learning pursuits. 
Hence, the title of this newsletter points to the powerful concept that is paving the ways 
forward for reducing uncertainty in seismic imaging and seismic characterization in 
coming years. This newsletter is also written to accompany the TechByte webinars on 
‘Least-Squares Migration’ and ‘Illumination vs AVO’. 

LSM in Traditional Formulism 

Recorded seismic data is band-limited (in temporal frequency and spatial frequency, i.e. wavenumber), subsurface 
seismic illumination is highly non-uniform because of imperfect acquisition geometry and impedance 
heterogeneities in the subsurface, and seismic migration is not the mathematical inverse of modeling (see also 
below). Collectively, the images of the subsurface produced by conventional seismic migration do not recover the 
true reflectivity and resolution for known fundamental reasons. 

In my TechByte webinar on Least-Squares Migration (LSM), I discussed the two common forms of LSM; which are 
pursued in either the image domain or the data domain, and which have a diverse range of implementation in the 
industry and academia. What is common to all styles of LSM is the ambition to compensate for variable subsurface 
illumination, and correspondingly improve amplitude balance across migrated reflectivity images. Furthermore, if 
implemented optimally, the spatial resolution in reflectivity images (the resolution of event truncations, fault planes, 
localized clinoform features, etc.) should also improve due to the higher wavenumber content in the images. Note 
that all LSM implementations widely used today do not attempt to update the velocity model. 

Despite the aforementioned inability of conventional depth migration to correctly recover that reflectivity model, the 
redundancy of subsurface information captured by (typically) many thousands of overlapping shot gathers does 
mean that much of the desired reflectivity information is in fact available in the collective dataset; and can indeed 
be recovered with a more sophisticated approach to seismic migration. This is the ambition of LSM. 

The ‘Least-Squares’ phrase in LSM refers to the mathematics behind the premise of LSM. As I noted in the previous 

Industry Insights newsletter on FWI, recorded seismic data dobs ≈ dmod = Lm, where L is an operator that 

transforms the model, m, into the modeled data, dmod. More commonly, it is said that L maps the seismic data 

from the model space to the data space. In FWI the desired model is subsurface velocity, and in migration the 
desired model is subsurface reflectivity. 

Conventional depth migration produces an approximation to the reflectivity, mmig = L*dobs, where L* is the adjoint 

(matrix transpose) of the modeling operator L. As noted, migration is not the inverse of a modeling operation, 

however, the reflectivity model, mest, can be recovered by pursuing a classic inverse solution as follows: 

mest = (L*L)-1L*dobs         (1) 

In the manner also pursued in FWI (refer to the previous Industry Insights newsletter on FWI), the data-space 

implementation of LSM recovers the model, m, by iteratively minimizing the objective function  

i||dmod,i(m) – dobs,i|| + ||m – mref|| with appropriate regularization terms. In other words, an initial reflectivity 

estimate (the traditional migration image) is iteratively updated until the reflectivity is much closer to the truth than 
is recovered using traditional imaging. 

I will first briefly explain how the historically more common implementation of equation (1) is pursued in the image 

domain by estimating L*L, and then I will explain the more correct data domain implementation of LSM. The strong 

similarities to Reverse Time Migration (RTM), FWI and Deep Neural Network (DNN) training will become evident. 

https://www.pgs.com/media-and-events/webinar-library/technology-webinars/webinars/lsm-extending-the-power-of-migration-to-yield-unrivalled-resolution-and-quality/
https://www.pgs.com/media-and-events/webinar-library/technology-webinars/webinars/illumination-vs-avo-the-value-of-least-squares-migration/
https://www.pgs.com/media-and-events/webinar-library/technology-webinars/webinars/lsm-extending-the-power-of-migration-to-yield-unrivalled-resolution-and-quality/
https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/industry_insights2020_02_fwi_sep2020.pdf
https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/industry_insights2020_02_fwi_sep2020.pdf
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Image Domain LSM in Practical Terms 

Image domain LSM explicitly computes L*L  H, where H is the Hessian matrix containing the desired subsurface 

illumination information. As the Hessian matrix is normally massive in size for modern 3D datasets, and too 

computationally intensive to compute directly, H is explicitly computed using a synthetic modeling-migration 

exercise (see below), but can also be approximated by moving-window matching filters applied to migrated data. 

As shown in Figure 1, Point Spread Functions (PSFs) representing the spatially-variable migration impulse 

response are computed by embedding a grid of point diffractors into the velocity model used for imaging, forward 
modelling each diffraction response, and then migrating the result. 

Equation (1) then becomes mest = H-1mmig, remembering that mmig = L*dobs. 

The implementation of this form of image domain LSM is therefore achieved by multi-dimensional deconvolution of 
the PSFs from the migration of the real data (hence the ‘image domain’ terminology). When done correctly, LSM 
yields a reflectivity image with higher wavenumber content (Figure 1) and more uniform illumination (Figure 2). 

 

Figure 1. (left) PSFs computed below a salt overhang in the Sigsbee2A synthetic model; (center) FK spectrum from 
traditionally-migrated data; and (right) FK spectrum after LSM, containing higher wavenumber amplitudes. 

The PSFs can also be computed in an angle-dependent manner, thereby enabling pre-stack implementation. The 
imaging platform may be any solution such as Kirchhoff migration, one-way wavefield extrapolation migration, or 
two-way wavefield propagation migration (i.e. RTM). In practice, the choice of imaging platform is generally dictated 
by the complexity of the subsurface geology and the computational budget. 

Note that all implementations LSM today do not update the velocity model used for imaging. 

Data Domain LSM in Practical Terms 

Alternatively, an implicit LSM approach in the data domain solves equation (1) and recovers the operator L via a 

linearized optimization approach. In practice, this involves the iterative updating of the desired reflectivity model in 
a manner analogous to the iterative updating of the desired velocity model via non-linear inversion in FWI. 

As shown schematically in Figure 3, data domain LSM is pursued as follows: 

 Each recorded shot gather is initially migrated in the traditional manner, for example, using RTM: 
A source wavelet is injected into the velocity model at each shot location, and forward-propagated 
(modelled) source wavefield snapshots are stored memory for each appropriate depth step. Each 
recorded shot gather is injected into the model at all receiver locations, starting with the largest 
recorded time sample. The ‘back-propagated receiver wavefield’ is also stored as a series of 
wavefield snapshots. An imaging condition recovers an image from appropriate pairs of source 
and receiver wavefields wherever the two wavefields are kinematically equivalent at the various 
subsurface locations, this process is repeated for all source and receiver wavefield snapshots, 
and the results are summed to produce the ‘partial’ image for each shot gather, and these partial 

images are summed to yield the reflectivity model, m. 

 The reflectivity model, m, is then used to model each shot gather using Born modelling (dsyn), and 

the residual reflectivity for each shot gather is computed from (dobs – dsyn). 
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 This residual shot gather is then used when back-propagating the receiver wavefield in RTM. The 
forward-propagation step is identical to the initial migration. The reflectivity from this residual 

migration step is added to the model, m. 

 Iteration continues until the norm of the (regularized) objective function becomes acceptably small. It 
follows that the shot gather modelled in the final iteration is a match to the recorded shot gather at 

each location, but the reflectivity model, m, will be much closer to the truth than was initially recovered 

using traditional RTM. 

 

 

Figure 2. By comparison to traditional migration (upper), 
which often fails to recover the true earth reflectivity in 
areas affected by subsurface illumination variations and 
imperfect acquisition geometry, LSM (middle) recovers 
the reflectivity much closer to the true model (lower). If 
implemented correctly, local image focusing should be 
much sharper (e.g. the point diffractors embedded into 
the synthetic data model), and spatial resolution should 
be better due to the improvement in high wavenumber 
content (e.g. local event terminations and fault plane 
imaging). 
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Figure 3. Schematic workflow for data domain 
(iterative) LSM. Each iteration involves one 
(Born) modelling step and one migration, and a 
residual shot gather is migrated and used to 
update the reflectivity model. 

 

In the most recent development, data domain LSM can compute highly accurate angle domain common image 
gathers (ADCIGs).  

RTM, Data Domain LSM, and FWI 

Table 1 compares the main elements of RTM, (data domain) LS-RTM, and FWI. 

Whereas RTM and LS-RTM assume the velocity model is final, FWI updates the model during each iteration. The 
forward-propagated source wavefield and the back-propagated residual wavefield therefore both use different 
velocity models during each FWI iteration. 

LS-RTM back-propagates the residual reflectivity information during each RTM-based update of the reflectivity 
model. In a more complex workflow, FWI back-propagates the residual reflectivity information and then computes 
the gradient as an RTM image that is then converted to a velocity model update. 

The imaging condition at PGS within RTM is the ‘Inverse Scattering Imaging Condition’ (ISIC). Traditional RTM 
correlation methods can be negatively affected by backscattered and turning waves in the modeling process, which 
causes the incident and reflected wavefields to be in phase at locations that are not the reflection points. This results 
in strongly correlated noise in the seismic image. 

The ISIC has been designed to reduce the imaging noise by using directional information computed directly from 
the data. ISIC is based on a generalized inverse scattering imaging condition in which the backscattered waves are 
attenuated by using the combination of two separate images: one based on the product of the time derivatives of 
the incident and reflected wavefields, and the other based on the product of the spatial gradients of the incident and 
reflected wavefields. These images are then combined to produce the final inverse scattering image. 

A Deconvolution ISIC has also been developed that improves the resolution of both pre-stack and post-stack RTM 
reflectivity, and that produces amplitudes that are more directly related to the true reflection coefficient. 

Figure 4 links FWI and LSM through their complementary wavenumber contributions. Reference is given to the 

previous Industry Insights newsletter on FWI, which noted that the use of a traditional imaging condition when 
computing the reflection FWI gradient will include a migration isochrone that contributes high wavenumber (i.e. 
reflectivity) information to the (velocity) model updates. By computing a velocity sensitivity kernel based upon the 
ISIC, model updates more correctly recover low wavenumber information, and velocity updates are no longer forced 
to coincide with impedance layer contrasts. 

The ‘true’ earth model can be regarded as the sum of the background model recovered by FWI (low wavenumbers) 
and the reflectivity recovered during imaging (high wavenumbers). As illustrated here, LSM will recover a more 
complete model of the reflectivity. 

  

https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/pgs_crawley_etal_seg2019_rtm-deconvolution.pdf
https://www.pgs.com/globalassets/technical-library/tech-lib-pdfs/industry_insights2020_02_fwi_sep2020.pdf
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Solution Forward-
Propagation 
of Source 
Wavefield 

Back-
Propagation 
Velocity 
Model 

Back-
Propagation 
Wavefield 

Residual 
Wavefield 

Image 
Computation 

Output 
Model 

RTM Final velocity 
model 

Final velocity 
model 

Receiver 
wavefield 
(recorded 
shot) 

N/A ISIC or 
deconvolution 
ISIC 

Reflectivity 

LS-RTM Final velocity 
model 

Final velocity 
model 

Receiver 
wavefield 
(recorded 
shot), then 
iterative 
estimates of 
the residual 
wavefield 

(modeled 
shot from 
reflectivity 

model – 
recorded 
shot) 

ISIC or 
deconvolution 
ISIC 

Reflectivity 

(iteratively 
updated) 

FWI Velocity 
model 
changes in 
each iteration 

Velocity 
model 
changes in 
each iteration 

Iterative 
estimates of 
the residual 
wavefield 

(modeled 
shot from 
velocity 

model – 
recorded 
shot) 

Gradient 
based upon 
dynamically-
weighted 
velocity 
sensitivity 
kernel 

Velocity 

(iteratively 
updated) 

*ISIC = Inverse Scattering Imaging Condition 

Table 1. Comparison between the components of RTM, data domain LS-RTM, and FWI. 

 

Figure 4. The ‘true’ earth model (left) can be regarded as the sum of the background model recovered by FWI (low 
wavenumbers: center) and the reflectivity recovered during imaging (high wavenumbers: right). 
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Linking Pre-Stack and Post-Stack Illumination 

Figure 5 uses a North Sea example of high-velocity injectite features in the overburden. Full wavefield FWI using 

diving waves, refractions and reflections has recovered an excellent high-resolution velocity model over all depths 
of exploration from 8km multisensor GeoStreamer data (upper left panel in Figure 5). The high-velocity anomalies 

spatially coincident with the injectite features are clearly associated with illumination variations in the deeper 
subsurface (upper right panel in Figure 5). Illumination overlays such as this are produced by extracting the main 
diagonal information in the Hessian matrix computed during image domain LSM. The lower panel in Figure 5 shows 

illumination as an offset-dependent color overlay on NMO-corrected offset domain common image gathers 
(ODCIGs). In this example, the ODCIGs were produced with Kirchhoff image domain LSM. Overall, these examples 
illustrate the considerable flexibility available when a portfolio of image domain and data domain LSM solutions are 
available for both pre-stack and post-stack application. 

 

Figure 5. (upper left) High resolution velocity model recovered by full wavefield FWI; (upper right) Illumination 
computed from the Hessian matrix; and (lower) NMO-corrected offset domain common image gathers (ODCIGs) 
with offset- and depth-dependent illumination overlays computed from the Hessian matrix. Illumination variations 
are more complex when viewed in the pre-stack domains. 
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Note that the illumination compensation applied by LSM applies to both source and receiver side effects, whereas 
the ‘illumination compensation’ applied within some conventional imaging solutions only affects the source 
considerations. 

In some scenarios, the application of LSM prior to amplitude-based studies may be beneficial to the recovery of the 
amplitude vs. angle (AVA) gradient without contamination by illumination effects. 

Figure 6 presents a series of high-resolution FWI and data domain LSM depth slices from the Orphan Basin in 

offshore Eastern Canada. A coherency-based attribute was applied to the LSM volume to enhance local high-
frequency features. The upper panel in Figure 6 shows depth slices between 2.7km and 5.2km, highlighting the 
power of LSM to enhance reflectivity and spatial resolution over a large range of depths. The lower panel in Figure 
6 overlays the full wavefield FWI velocity model in color. A remarkable spatial correlation between high-resolution 

velocity model features and the LSM coherency attributes is observed; even to 5.2km depth using a conventional 
8.1km multisensor GeoStreamer spread. 

Back-Propagation of Deep Neural Network Training Errors 

The back-propagation principles discussed here are shared with the training of Deep Neural Networks (DNNs) 
commonly used for an increasingly diverse range of machine learning applications in our industry. 

Figure 7 shows a schematic DNN used to four output values from eight input values. In this simple cartoon, the 

third hidden layer is a ‘dense’ layer wherein each neuron is connected to every neuron in the second hidden layer. 

In compact vectorized (matrix) form, the activation of each layer, l, can be written as follows: 

al
 = (wlal-1 + bl

)         (2) 

Where wl
 is the weight vector from layer l-1 to layer l, al

 is the activation vector for layer l, al-1
 is the activation 

vector for layer l-1 (i.e. the output from the previous layer; which could be the input x in the case of the first hidden 

layer), bl
 is the bias vector (effectively threshold values to influence the nature of activation in the next layer) for 

layer l, and  is some function. 

In Figure 7, the activation (a) of one particular neuron in the third layer is highlighted in terms of one particular 

neuron in the second layer. In practice, the weight is uniquely defined for each neural pathway. The term inside the 

parenthesis in equation (2) above is a linear operation, however, the function  may often be a non-linear operation; 

such as sigmoid functions (compress weights to be in the range of 0-1), hyperbolic tangent (compress weights to 
be in the range of ±1), rectified linear unit (ReLU) operations (convert all weights to be positive), and so on. 

With appropriate design, the DNN can be applied to apparently limitless Artificial intelligence (AI) pursuits well 
beyond the scope of this discussion, but emerging applications in the seismic exploration workflow include 
automated seismic interpretation (event picking, fault plane interpretation, geobody extraction, etc.), automated QC 
in seismic acquisition and processing, preconditioning of the input data to FWI to avoid cycle-skipping, and so on. 

In simple terms, DNNs are ‘trained’ by back-propagating a cost function in some kind of gradient descent exercise. 
The cost function is computed by comparing the output values from training data to their known (labeled) values. 

In practice, the data from a study are separated into ‘training’ data with labeled values and the unlabeled data that 
the trained network is applied to. To accommodate the large size of typical training datasets, the training data are 
commonly split into randomly-selected mini-batches. In the first ‘epoch’ of network training with all the batches, 

each neuron’s values of w and b are set to random values, and the first mini-batch of training data is forward-

propagated through the network to produce a vector of output values. A cost function is computed, used within a 
stochastic gradient descent process to back-propagate the cost, and the updates to each (unknown) network 
parameter is driven by how much the change in each parameter value contributed to the change in the cost function. 

This process is repeated for all the batches, and once all the batches have been used, that epoch is complete, and 
the process starts again with a re-shuffling of the full training dataset; generally until the cost function indicates that 
the global minima in network weight and bias values has been computed. 

As with the scenarios for FWI and LSM, much DNN R&D is being invested in the determination of optimum initial 
weights, and the pursuit of regularization to prevent over-fitting (which may in practice simply be network 
architectures that pursue model generalization, rather than classic regularization). 
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Figure 6. (upper) Coherence attribute depth slices computed from data domain LSM imaging in the Orphan Basin, 
offshore Eastern Canada; (lower) Coherency depth slices overlain with the FWI depth velocity model in colour. Note 
the excellent spatial resolution and correlation of the FWI velocity model at all depths with the reflectivity features 
derived from LSM! The full wavefield FWI solution has recovered excellent resolution to at least 5.2km using 8.1km 
multisensor streamer lengths, and data domain LSM has correspondingly recovered excellent high wavenumber 
spatial resolution over all depths of exploration interest. 
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Figure 7. Schematic represntation of a Deep Neural Network (DNN). In this arbitrary example with three (dense) 
hidden layers, eight input samples yield four output values. 
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Summary 

I discussed the workflow strategies for both image domain and data domain Least-Squares Migration (LSM) in both 
classical and practical terms. When applied correctly, LSM can use many common seismic imaging platforms, and 
can be applicable to both pre-stack and post-stack seismic data. An improved estimate of the reflectivity model 
should also demonstrate better spatial resolution (associated with higher wavenumber content). Image domain LSM 
explicitly computes a form of the Hessian matrix, which is used to ‘de-blur’ a migrated image via a multi-dimensional 
deconvolution of the Hessian. Data domain LSM pursues an iterative minimization of an objective function based 
on the difference between the observed data and synthetic data modeled from the reflectivity at each iteration. 
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I then compared the similarities between RTM, data domain LS-RTM and FWI, in terms of the iterative back-
propagation of either receiver wavefields (RTM) or residual wavefields (LS-RTM and FWI) used as boundary 
conditions to the model. The specific terminology used by technical practitioners is that each method uses the 
‘Adjoint Source’ during propagation, but I avoided this terminology in the text. For RTM there is no iterative updates 
to either the velocity of reflectivity model. For data domain LS-RTM the reflectivity model is updated, and for FWI 
the velocity model is updated. It is noted that although the gradient computed within each FWI iteration is an RTM 
image of reflectivity, this is converted to an update to the velocity model. 

FWI and RTM / LS-RTM (or indeed, any imaging method) can also be related in terms of their complementary 
wavenumber contributions to our estimate of the ‘true’ earth model: FWI recovers the low wavenumber background 
model, and imaging recovers the high wavenumber reflectivity. Although not explored here, it follows that the 
industry vision of recovering true earth models from field measurements (shot gathers) must integrate the 
mathematics central to both FWI and LSM. 

Finally, I noted that Deep Neural Network (DNN) training also pursues a back-propagation of errors computed within 
a cost function; analogous in some ways to the back-propagation methods used for FWI, RTM and data domain 
LSM. 

As suggested by the sub-title of this newsletter, it can therefore be predicted that key aspects in the future of seismic 
imaging and many types of seismic data characterization will depend upon the back-propagation methods 
discussed here. Traditional one-pass imaging is rapidly becoming ‘Imaging by inversion’ (in terms of the recovery 
of both velocity and reflectivity), and the tidal wave of AI applications to how we interpret and use seismic data can 
be broadly described as ‘Characterization by inversion’. 

Suggested Reading Material 

 Full Waveform Inversion: https://www.pgs.com/imaging/tools-and-techniques/full-waveform-inversion/ 

 Full Waveform Inversion (FWI), Industry Insights: https://www.pgs.com/globalassets/technical-
library/tech-lib-pdfs/industry_insights2020_02_fwi_sep2020.pdf 

 Least-Squares Migration: https://www.pgs.com/imaging/tools-and-techniques/least-squaresmigration/ 

 Reverse Time Migration: https://www.pgs.com/imaging/tools-and-techniques/advanced-migration-
solutions-rtm-wei/technology/reverse-time-migration/ 
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