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Summary 

 

Machine learning, and the variations thereof, have been 

around for a considerable time, perhaps as far back as the 

early 19th century with Bayes’ work on probability theory. It 

is then a bit of a surprise that these techniques have not made 

more headway in seismic processing, a data rich industry 

that should naturally suit greater automation using machine 

learning algorithms.  

 

Mathematical functions used in seismic processing are 

highly evolved and designed to improve the data quality by 

removing noise, correctly positioning data, or enhancing the 

data quality. The decade’s long development of these 

applications means they are extremely good at solving the 

challenges each one individually addresses.  

 

So how can machine learning help when the industry already 

has highly evolved and effective tools? There are two 

possible categories for applications, one to supplement the 

existing functions in a framework that enables greater 

autonomy, and the second to replace tools that are not as 

effective as they could be, allowing a greater diversity of 

testing-free applications (generalization). In both cases, the 

goal is improved data quality, faster. We present examples 

that might benefit seismic processing, as well as comment 

on the challenges faced with these methods. 

 

Introduction 

 

Machine learning (ML) applications in seismic processing 

are an ever increasing research investment, yet very few are 

being actively used in commercial seismic processing 

projects. An indication of the increasing research in machine 

learning can be seen in Figure 1, which plots the number of 

submissions of papers linked to machine learning against all 

submissions, for the Society of Exploration Geophysicists’ 

GEOPHYSICS journal. Total submissions have increased 

by 2.4 times since 2006, whilst those specifically targeting 

ML (including papers mentioning machine learning, 

artificial intelligence, data analytics or automation) have 

grown by more than 23 times, and now represent 15% of all 

submissions.  

 

Early ML work in seismic processing targeted quality 

control (QC) tasks like impulsive noise attenuation, 

classifying noise, signal and leakage, prior to defining a 3D 

space suitable for unsupervised clustering to define whether 

the underlying mathematical algorithm had been successful 

in its task (Spanos and Bekara, 2013; Bekara, 2014). These 

processes evolved to incorporate other techniques, like 

principal component analysis, after significantly increasing 

the feature space, in an effort to try and further replicate what 

a geophysicist might do when checking if a noise attenuation 

process was successful (Martin et al., 2015).  

 

 
Figure 1:  Year on year submissions to the Society of 

Exploration Geophysicists’ GEOPHYSICS journal. Total 

submissions are mapped against the ever-growing number of 

those refering to machine learning, artificial intelligence, 

data analytics and automation. 

 

There are numerous signal processing steps that impact data 

quality, and are heavily dependent on highly evolved 

mathematical processes, including data interpolation 

algorithms. There are several reasons why seismic data 

sampling might not be complete or optimal, from 

acquisition-related weather conditions to cost effective 

geometry designs. Some amelioration of these can be 

achieved by algorithms designed to reconstruct missing data, 

however, they have limitations and use assumptions, 

meaning results are sometimes sub-optimal. There have been 

several research projects that have developed ML 

mechanisms to solve the data reconstruction challenge, such 

as support-vector regression (SVR) (Jia and Ma, 2017). 

Unlike classification approaches, SVR is effective for 

continuous records and for transferring nonlinear regression 

problems with low dimensionality to linear problems in high 

dimensional space; mapping incomplete input data to fully 

populated output data, based on a volume of training points, 

so that different data may be interpolated using the trained 

model. Other applications of ML to data interpolation 

include dictionary learning (Turquais et al., 2019) and more 
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Machine learning applications to seismic processing 

advanced deep convolutional neural network methods 

(Jaikla et al., 2021).  

The usability of seismic data is heavily dependent on the 

accurate positioning of energy, through data migration. 

Building the velocity model is a time-consuming step in a 

processing project. Most models are derived using inverse 

systems that are under-determined. This may lead to 

uncertainty in the imaging. Additionally, many of the 

processes are highly nonlinear, again leading to model and 

imaging ambiguity. Accelerated and automated model 

building can be achieved in a stochastic framework with 

feedback, a crude system built around existing tools (Martin 

and Bell, 2019), however, this kind of approach still relies 

on the same underlying assumptions of conventional 

methods. A number of examples of neural network driven 

approaches, where efficacy and transferability is dependent 

on the training regime and hyperparameters, can be found in 

the literature (Øye and Dahl, 2019; Yang and Ma, 2019; 

Zheng et al., 2019) 

 

In the following Examples section we outline two 

applications of ML to noise attenuation; the first is a 

innovative framework around an existing algorithm that 

utilizes both supervised and reinforcement learning to 

process at the ensemble level, the second uses a deep 

convolutional neural network for removing migration 

related coherent noise, and demonstrate the models ability to 

effectively generalize to different data sets. 

 

Example one – the framework approach 

 

The first example uses an automatic attribute driven image 

classification system to perform a labelling of data for an 

impulsive noise attenuation process; samples are labelled as 

signal, noise or signal and noise (Farmani and Pedersen, 

2020). For the latter classification, there are two scenarios: 

 

1) ‘denoised’ data with residual noise, or 

2) Noise estimate with signal leakage 

 

The image segmentation classification used a U-Net 

architecture (Ronneberger et al., 2015), with input tiles of 

336 by 336 samples. The model component has 21 by 21 

samples in the lowest resolution layer, where the first 

encoder had 16 filters. The supervised training was 

conducted using labelled tiles with over 5000 used for each 

classified class. Tiles were split, with 70% being used for 

training, whilst verification used 20% and 10% was used for 

testing.  

 

The mixed classification approach (fourth signal and noise 

category) improves the determination of leakage, whether 

signal or noise, and is demonstrated in Figure 2, where the 

results of three increasingly harsh applications of denoise are 

input to the classifcation, enabling a more accurate measure 

of the denoising effectiveness. Equally importantly, it 

permits the inclusion, within the framework, of a 

reinforcement loop (Farmani and Pedersen, 2020), initially 

determining the successfulness of the 

application/parameterization, and subsequently followed by 

an automated re-run with automatic parameter modification, 

on a gather by gather basis, to optimize denoise 

performance. This kind of framework, built around an 

existing signal processing tool, is well suited to the use of a 

data analytics approach to initial parameter estimation 

(Martin et al., 2020), and may enable ever more automation, 

by bypassing parameter testing, therefore accelerating 

turnaround.  

 

 
Figure 2:  Four-way automated image classification system, 

defining whether energy in the data is masked, signal, noise 

or signal and noise. The additional class improves the 

classification and permits the reinforcement automation.   

 

The inclusion of the reinforcement system, where 

classification leads to a re-run of the underlying algorithm to 

high-grade the denoise performance at the ensemble level, is 

demonstrated in Figure 3 using a common channel data set. 

The ‘Production denoise’ panel show a single pass denoise 

result which is fed into the ML framework. The ‘Automated 

denoise’ panel demonstrates the high grading of the data 

quality following classification and automatic 

reparameterization and rerunning, the difference of which is 

shown in the ‘Automation benefit’ panel.  

 

Example two – the algorithm replacement approach 

 

In the second example coherent noise in the image domain 

is attenuated using a deep convolutional neural network 

(CNN). Coherent noise is challenging to remove as it can 
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Machine learning applications to seismic processing 

often have characteristics similar to the underlying signal we 

want to preserve, and consequently processing algorithms 

based on seismic characteristics or patterns, often categorize 

the noise as signal and therefore do not remove it, or at least 

not very effectively. Developing a CNN tool to improve the 

efficiency of the denoising is a highly desirable goal. The 

architecture used in the following example contains 

contraction, bottleneck, and expansion branches as part of a 

U-Net architecture. Training was performed on 

approximately 100 000 samples, augmented with flips, 

crops, scaling and filtering. The input consisted of tiles of 

migrated data that had been subsampled on input resulting in 

migration related coherent noise, whilst the idealized output 

was optimally sampled for migration. Hyperparameters were 

adjusted during the training phase to minimize the prediction 

error (Klochikhina et al., 2020). Figure 4 shows the results 

of an application of the trained network, for a deep water 

data example from offshore Brazil. Orange arrows in the 

upper panel highlight the offending noise, whilst blue arrows 

in the bottom panel show how the CNN has removed the 

noise that is still present when a conventional approach is 

used (turquoise arrows in the middle panel). 

 

 
 

Figure 3:  Images showing the improvement in denoise 

performance through use of a machine learning framework 

that includes automated image classification and 

reinforcement enabled feedback. The top row shows a 

traditional ‘single survey parameter set’ application, whilst 

the bottom left panel demonstrates the machine learning 

result, which had better signal preservation and noise 

attenuation (bottom right panel). 

In this first example the model generalized well from the 

initial training based on synthetic data, the challenge of over-

fitting had been averted. This is primarily due to the 

variability of the training data used, facilitated through the 

augmentation process; the frequency, amplitude and noise 

level of the real field data set example are accommodated in 

the training data set.  

 

 
 

Figure 4:  Offshore Brazil example of the application of a 

trained CNN to remove coherent image domain noise. The 

noise (top panel orange arrows) is attenuated by the CNN 

application (blue arrows bottom panel). The result is 

superior to a conventional apprach (middle panel).  
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Machine learning applications to seismic processing 

This is also confirmed by an application to a different field 

seismic data set, a shallow water example from the North 

Sea (Figure 5), where the seismic and noise characteristics 

are very different to the first example from offshore Brazil.  

The upper panel highlights the noise caused by suboptimal 

destructive interference in the migration process for a deep 

high impedance contrast (orange arrows). The bottom panel 

shows how the application of the trained CNN attenuates this 

noise (blue arrows) with minimal impact on the desirable 

reflectivity, despite it having similar seismic 

‘characteristics’ as the noise. 

 

 
 

Figure 5: North Sea example of the application of a trained 

CNN to remove coherent image domain noise. The noise 

(top panel orange arrows) is attenuated by the CNN 

application (blue arrows bottom panel). The result shows 

that the network generalizes in an effective way from the 

initial training. 

 

 

 

Discussion and conclusions 

 

With success stories like those outlined and referenced here, 

why is it that there are not more examples of ML being 

actively used in seismic processing? It may be that the 

current and historical applications, whose continual 

development has spanned years of effort, are perpetually 

optimized and highly effective; it is easy to cherry-pick some 

good ML application examples, but are they consistently 

better—do the results meet the hype? It could be that 

effective multi-dimensional training is a significant 

undertaking, and that hyperparameter testing is still a form 

of testing, so will these approaches ever really help reduce 

turnaround? Even though seismic data processing experts 

are at the pinnacle of data science, there might be a 

perception that different expertise is required in research 

divisions to properly develop ML tools? Conceivably, 

integrating ML libraries and codes within existing seismic 

processing platforms might not be as easy as anticipated, and 

new tools are constantly evolving; which does one use? 

Could it be that there are cultural issues with ML driven 

automation, or maybe even a lack of financial imperative? 

Perhaps it always takes this long, and our collective 

memories of the time it takes from conception to delivery 

have been warped. Whatever the reason, ML development 

in seismic processing is slow, but steady.   

 

Summary 

 

Machine learning is an increasingly popular area of seismic 

processing research, although little evidence exists of day-

to-day use. We have presented two examples of ML methods 

to help in data processing. The first, a framework built 

around an existing mathematical algorithm, enables 

automated classification of the process’ effectiveness, 

followed by automated re-running enabled through 

reinforcement, with high-graded parameters. This type of 

approach could reduce turnaround, by eliminating laborious 

QC and parameter testing, and result in an improved 

denoising performance. The second, a standalone 

application, and direct replacement of an existing denoise 

tool, demonstrates how ML methods may supplant existing 

tools where they are not as effective as they might be.    
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