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Summary 

 

Seismic images are often contaminated by migration noise. 

The noise attenuation process can take a lot of effort from 

the domain expert and, in many cases, it can be challenging 

to get the optimal result. In recent years it has been 

demonstrated that data-driven approaches can produce 

quality results with minimum effort. In digital image 

processing, convolutional neural networks (CNN) have 

gained a lot of popularity. When trained properly on 

carefully selected data, CNNs can potentially outperform 

traditional methods through task automation leading to 

reduced turnaround time of processing projects. In this work 

we propose to train a neural network, specifically a U-net 

architecture, to eliminate migration artifacts from seismic 

images. We explain the data preparation step and describe 

the model parameters and training process. Finally, we 

demonstrate the model performance on field data examples 

from three different geographical regions.  

 

Introduction 

 

Presence of noise in seismic images complicates structural 

and quantitative interpretation and can lead to inaccurate 

results. Therefore, it is crucial to eliminate any undesired 

energy produced by migration of seismic data. In this work 

we focus on coherent noise that is often present in seismic 

images when lacking midpoint density in the direction 

orthogonal to sailing in offshore settings. The level of image 

distortion depends on the acquisition geometry, image 

sampling and migration algorithm. Propagation through a 

complex medium further degrades the quality by reducing 

signal penetration. The resulting images suffer either from 

insufficient wavenumber content or are contaminated by 

migration swings (Gardner and Canning, 1994). 

 

There are several approaches for reducing the effects of 

noise that is caused by limited data coverage: regularization 

of data in time domain before migration (Schonewille, 2000; 

Chemingui and Biondi, 2002), use of prior information 

(structural dip) during the imaging step (Alerini et al., 2009; 

Klokov et al., 2012), or post-migration image processing 

(Hale, 2011). In addition to their cost, these solutions often 

require significant effort from domain experts and may not 

lead to satisfactory results.  

 

With machine learning methods being widely used to 

automate routine tasks, we seek to reduce the turnaround 

time of seismic image de-noising by leveraging a data-driven 

approach. Following the success of using convolutional 

neural networks (Fukushima, 1980; LeCun et al., 1989) for 

image enhancement in various computer vision problems, 

including early attempts in our industry (Wang and Nealon, 

2019), we propose training a CNN architecture to attenuate 

coherent noise from seismic images.   

 

Neural network for image de-noising 

 

In this work we focus on elimination of uncanceled 

migration swings from seismic images. In many cases this 

noise is visually distinguishable from the true reflections, 

nevertheless its attenuation can be very challenging. Given 

the noise model, the removal can be done adaptively. 

Unfortunately, migration swing noise is quite complex, and 

in most cases, it is not feasible to build the noise model. 

Specific transformations can be key to separation of the 

noise and signal components, but it can time consuming to 

find that unique domain, and sometimes it’s impossible to 

solve the task.  

 

A data-driven approach like convolutional neural networks 

has been a popular alternative for conventional rule-based 

methods in many applications. Rather than dealing with 

various transformations and corresponding domains, one can 

use a more robust approach by training a neural network to 

perform the same task. Given enough training data, a 

network of reasonable capacity can approximate the 

behavior of the entire de-noising workflow. Instead of 

relying on a domain expert to develop a solution for a given 

dataset, we can feed a collection of data to the convolutional 

neural network so that it can learn to perform the image de-

noising automatically. The training data has to be carefully 

prepared to make sure the model will generalize well on 

variety of field data examples. Once the training is done, 

there is no longer need of an expect time to de-noise images. 

 

Among the wide variety of commonly used CNN 

architectures, we found a U-net architecture (Ronneberger et 

al., 2015) to be suitable for our de-noising objective. It 

shows better convergence, faster training, and it fits the 

problem naturally due to the presence of operations on 

different resolution levels (Figure 1). The architecture 

consists of three parts: the contraction (left branch), the 

bottleneck (bottom) and the expansion (right branch). Each 

convolutional layer receives an input and applies a set of 3x3 

filters, followed by a non-linear activation function. The 

contracting path consists of four blocks: each block has two 

convolutional layers followed by a down-sampling 

procedure (max pooling). The number of filters in the 

convolutional layers doubles each time the resolution 

decreases, so the architecture retains the ability to explain 

complex features present in the input. The bottom layer takes 

an input from the left branch and applies two convolutional 

layers. The expansion path receives the input from the 
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Seismic image de-noising with convolutional neural network 

bottleneck and it also consists of four blocks: each block has 

two convolutional layers followed by an up-sampling 

procedure. After each up-sampling step, the number of filters 

in each convolutional layer halves. The corresponding 

blocks of the contraction and expansion paths are linked by 

‘skip connections’ as shown in Figure 1 by blue horizontal 

arrows. These connections help solve the problem of 

vanishing gradient during the training stage and simplify the 

prediction task as there is no need for reconstruction of the 

image at full resolution from its compressed representation.  

 

We modified the original U-net architecture to account for 

the specific character of seismic data and achieve better 

output image quality while reducing the training time. We 

customized the activation functions, changed the number of 

filters in each layer and adjusted the hyperparameters of the 

network during the training process.  

 

The network was trained on synthetic migration results that 

had been simulated with dense acquisition (desired output), 

and decimated data (noisy input) using existing synthetic 

velocity models. We created 2D image patches of 256x256 

pixels (Figure 2) randomly selected from the migrated 

results. During the training and validation steps we observed 

the importance of input data quality. Therefore, we carefully 

selected each data training set to insure they vary in 

frequency content, structural dips, amplitudes, noise 

character and intensity. We also augmented the selected 

pairs of data to increase the number of examples by applying 

horizontal flips, sign reversal, filtering and scaling with 

depth. The parameters of the neural network were adjusted 

during the training process iteratively by minimizing the 

difference between the predicted and the desired outputs in 

𝐿2 sense using Adam Optimizer.  

 

The problem of noise removal can be approached in different 

ways. One approach is to train the network to estimate the 

noise from the given image, then the resulting clean image is 

obtained by subtracting the estimated noise. Alternatively, 

one can estimate the signal directly. We chose the latter 

approach to make predictions of the signal since we retain 

the majority of the structure of the input image after the de-

noising. 

 

A common problem of machine learning algorithms is 

overfitting – the phenomenon when a model may show great 

accuracy and performance on the data that were used for 

training but produce undesirable results on unseen data. This 

typically happens when the capacity of the model is too large 

compared to the diversity of the dataset that is used for 

building that model. For the case of neural networks, this 

situation manifests itself when there are too many model 

parameters. The model provides a great flexibility and 

approximation power, but the amount and variability of the 

data given to it is not enough to constrain the weights 

without regularization. As a result, the network makes 

unreasonable predictions for any data that differs from the 

training set. As a precaution, we can split the input dataset 

into training and validation parts and monitor the model 

performance on both. A gradual decrease of the loss function 

for both training and validation datasets implies reasonable 

generalization, assuming fair selection of the validation 

dataset. During the training step we carefully monitored the 

behavior of the objective function for both training and 

validation datasets, assuring the proper behavior. 

 

 

 

Figure 1:  Deep convolutional neural network architecture used for 
training and prediction 

 

Figure 2:  Training data examples: left column – input to the neural 

network (noisy image); middle column – desired output from the 

neural network (clean image); right column – difference between 

desired output and input (noise) 
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Seismic image de-noising with convolutional neural network 

Field data application 

 

We evaluate the model performance on field data examples 

from three different geographical regions.  

 

The first example from offshore Brazil (Figure 3) 

demonstrates the ability of the neural network to attenuate 

the unwanted migration isochrones without visible damage 

to image quality and resolution. The neural network can 

eliminate the migration artifacts that are seen in the shallow 

section and are also present in the deep part of the input 

image.  

 

In other examples from the Gulf of Mexico (Figures 4 and 

5), the coherent noise distorts seismic reflectors making 

interpretation challenging. The output from the neural 

network is easier to analyze since most of the unwanted 

energy has been eliminated from the image. 

 

In a North Sea example shown on Figure 6, the input to the 

neural network is contaminated by coherent migration 

artifacts due to the presence of an unconformity. The neural 

network can reduce the noise, clearing the image above the 

unconformity while preserving the geological integrity of 

the image.  

 

All examples demonstrate a potential of the neural network 

to generalize outside the training dataset. 

 

Conclusions 

 

We propose the use of a convolutional neural network for 

migration artifact attenuation. Successful applications to 

field data from different geological settings suggest that the 

model can be trained only once on properly generated 

synthetics and generalized for application to imaging 

projects from various geological regimes and different 

acquisition scenarios.  This new approach can significantly 

reduce turnaround time while improving quality of the final 

image. 

 

Acknowledgements 

 

Authors would like to thank PGS for permission to publish 

this work and PGS Sales & Services organization for 

providing the field data examples for model evaluation.  

 

 

 

 

 

  

Figure 3: Field data example from offshore Brazil: migration results (left) and de-noised image (right)  
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Seismic image de-noising with convolutional neural network 

 

 

 

 

 

 

 

 

 

 

      

    Figure 4: Field data example from the Gulf of Mexico: migration results (left) and predicted de-noised image (right) 

 

  

Figure 6: Field data example from North Sea: migration results (left) and predicted de-noised image (right) 

 

  

Figure 5: Field data example from the Gulf of Mexico: migration results (left) and de-noised image (right) 
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