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Summary 
 
The automation of model building using Full Waveform 
Inversion (FWI) depends on the lowest frequencies available 
in the data and an accurate initial model to avoid cycle-
skipping. To overcome the cycle-skipping, a new class of 
FWI approaches extend the solution search in one or more 
dimensions. We present a new method that uses the time-
warping function as the extension in the data space. This 
function dynamically transports the recorded data to the 
synthetic data and is imposed to represent the actual physical 
time. The resulting FWI objective function enables the 
solution of two parameters, velocity model and time-
warping extension, in a single optimization problem, which 
is solved by the Alternate Direction Method (ADM). The 
mapping function is found by Dynamic Time Warping 
(DTW) with an augmented cost function provided by the 
time-warping extension. The novel FWI objective function, 
allows automatic transition from a pure time-shift problem 
to a conventional FWI. We apply the new FWI method to 
both synthetic and field data to demonstrate its effectiveness 
starting from inaccurate initial models. Results show that the 
new FWI approach is able to build high-resolution models 
from very simple initial velocity models. 
 
 
Introduction 
 
FWI is a nonlinear optimization problem that matches 
modeled data to recorded field data (Tarantola, 1984). 
Typically, a least-squares objective function measures the 
data misfit. The non-convexity resulting from a least-squares 
objective function can cause FWI to converge to local 
minima. This problem, also known as cycle-skipping, is 
caused by lack of low-frequencies in the data and/or an 
inaccurate initial model. 
  
In practice, starting FWI from the lowest useable frequencies 
and the smallest offsets may solve cycle-skipping. This 
requires intensive intervention, affecting the cost and 
turnaround of the project and reducing the opportunities for 
model building automation. Different strategies have been 
proposed to overcome the cycle-skipping problem. Wang et 
al. (2016) and Yao et al. (2019) introduced a workflow that 
generated a series of intermediate datasets by shifting the 
field data within half a cycle from the synthetic data. Then, 
they applied a conventional least-squares FWI for inverting 
the resulting intermmediate datasets successively. Ma and 
Hale (2013) proposed to minimize travel time shifts 
estimated by dynamic image warping (DIW) for updating 
the background velocity in reflection FWI. Among this 
variety, the domain extension is a class of methods that add 

extra degrees of freedom in the model space to overcome 
cycle-skipping. The inversion is then reformulated to 
enforce the non-physical model extension to a physical one. 
The extension can be introduced either in the model space, 
like the time-lag extended reflectivity model (Biondi and 
Almomin, 2013) or in the data domain such as source 
extension (Huang et al., 2017) and receiver extension 
(Metivier et al., 2020).  Data domain extensions are 
preferable because they avoid increasing the computational 
cost, in contrast to those model extension-based approaches 
that require more modeling realizations. 
  
We introduce a novel method that minimizes the data fitting 
between the synthetic and the warped field data by imposing 
a constraint on the time-warping extension. This constraint 
requires that the time-warping extension becomes the 
physical time as the updated model approaches the global 
solution. We formulate a new objective function to solve for 
two parameters (velocity model and time-warping 
extension) in a single non-linear optimization problem. We 
apply the ADM to solve the cost function. The inner problem 
for the time-warping extension can be solved using dynamic 
programming similarly to classic DTW (Sakoe and Chiba, 
1978) but with the aforementioned constraint on the warping 
extension. This is in contrast to existing DTW algorithms 
(e.g., Hale, 2013). Additional preconditioning along the 
spatial axis is also applied to enhance lateral coherency.  The 
outer problem consists of updating the velocity model by a 
local optimization method. Thus, the new extended domain 
FWI approach automatically switches from a tomography 
term responsible of overcoming the cycle-skipping, to a 
conventional least-squares FWI term for retrieving a high-
resolution velocity model. 
 
First, we introduce our new extended-domain FWI objective 
function then we discuss its convexity properties with 
respect to the time shifts. Finally, we demonstrate the 
effectiveness of the new FWI algorithm using synthetic and 
field datasets starting from inaccurate initial models.  
 
FWI objective function using time-warping extension 
 
We start by introducing the time-warping extension 𝑇𝑇(𝑡𝑡) as 
a function of time so that the synthetic  𝑢𝑢(𝑡𝑡) and warped field 
data 𝑑𝑑(𝑇𝑇(𝑡𝑡)) are matched regardless of the initial model, i.e.: 
       
 
where the time-warping extension 𝑇𝑇(𝑡𝑡) is non-negative and 
satisfies the conditions 𝑇𝑇(0) = 0 and 𝑇𝑇(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 . As 
the velocity gets close to the target one, the time warping  
extension 𝑇𝑇(𝑡𝑡) approaches the actual physical time 𝑡𝑡, i.e.,  

𝑢𝑢(𝑡𝑡) = 𝑑𝑑(𝑇𝑇(𝑡𝑡)), 
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FWI with time-warping extension 
 

(2) 

(4) 

(3) 

𝑇𝑇(𝑡𝑡) = 𝑡𝑡, so that the warped data 𝑑𝑑�𝑇𝑇(𝑡𝑡)� becomes the 
actual field data 𝑑𝑑(𝑡𝑡). Combining this constraint with the 
data matching equation 1, we formulate our new FWI 
objective function as 
 
        𝐽𝐽[𝑚𝑚,𝑇𝑇] = 1

2
||𝐹𝐹[𝑚𝑚] − 𝑑𝑑(𝑇𝑇(𝑡𝑡))||22   + 𝜆𝜆

2
‖𝑡𝑡 − 𝑇𝑇‖22, 

 
where 𝑚𝑚 is the velocity model, 𝑢𝑢 = 𝐹𝐹[𝑚𝑚] is the synthetic 
data, λ is a positive trade-off parameter, 𝑇𝑇(𝑡𝑡) is the time-
warping extension that dynamically transports the field data 
𝑑𝑑 towards the synthetic data 𝑢𝑢 and the difference 𝜏𝜏(𝑡𝑡) = 𝑡𝑡 −
𝑇𝑇(𝑡𝑡) is defined as the shift field which captures the relative 
time shifts between the synthetic and field data. 
 
We apply ADM to the optimization problem described in 
equation 2. First, the inner problem is solved by minimizing 
𝐽𝐽[𝑚𝑚,𝑇𝑇] over 𝑇𝑇 for the time-warping extension using 
dynamic programming (e.g., Sakoe and Chiba, 1978). The 
resulting augmented cost function is  
 
   𝑇𝑇[𝑚𝑚] = argmin

𝑇𝑇

1
2

||𝐹𝐹[𝑚𝑚] − 𝑑𝑑(𝑇𝑇(𝑡𝑡))||22   + 𝜆𝜆
2
‖𝑡𝑡 − 𝑇𝑇‖22 , 

 
Additional constraints on the time-warping function can be 
applied in both time and spatial axes to enhance the lateral 
coherence (e.g., Ma and Hale, 2013). The outer problem is 
the minimization of the reduced objective function: 
 
    𝐽𝐽𝑟𝑟𝑟𝑟𝑟𝑟[𝑚𝑚] =  1

2
||𝐹𝐹[𝑚𝑚] − 𝑑𝑑(𝑇𝑇[𝑚𝑚])||22 + 𝜆𝜆

2
‖𝑡𝑡 − 𝑇𝑇[𝑚𝑚]‖22, 

 
Figure 1 shows the behavior of the reduced objective 
function 4 with time-warping extension for large, medium 
and small values of λ comparing with a least-squares FWI. 
As λ decreases, the reduced objective function departs from 
a least-squares objective function to the quadratic objective 
function which is related to the time shift and is responsible 
for tomographic updates.  
 
SYNTHETIC EXAMPLE 
 
We validated our algorithm using a modified version of the 
Marmousi model that simulates a marine setting (Figure 2a). 
The synthetic data were generated in a frequency bandwidth 
of 5 to 10 Hz. The data contained no frequencies below 3 Hz 
and the maximum offset was 5.5 km. The initial model 
(Figure 2b) consisted of a 1D velocity function that linearly 
increases with depth from the water bottom. This simple 
model produces faster refracted events (Figure 2f) than those 
corresponding to the true model as indicated by the yellow 
arrows (Figure 2e). For comparison, we apply the 
conventional L2-norm based FWI and the novel FWI with 
time-warping extension without the separation of reflections 
and refractions. The inverted model using a conventional 
FWI (Figure 2c) is trapped in a local minimum due to the 

severe cycle-skipping. In contrast, the inverted model from 
our approach (Figure 2d) accurately resembles the true 
model.  This is validated by comparing the sample synthetic 
shot gather computed from the inverted models using the 
conventional (Figure 2g) and the new approach (Figure 2h) 
with the input data.  Notice the good match of reflections in 
Figures 2e and 2h indicated by dotted yellow ellipses.  
 

FIELD DATA EXAMPLES 
 
In this section, we describe the application of the new 
approach to two field datasets starting from very simple 
initial models. The first dataset corresponds to data acquired 
in offshore Malaysia, using the continuous wavefields 
method (Klüver et al., 2020). Multisensor streamers with a 
maximum inline offset of 8.1 km were deployed in a shallow 
water setting with depths between 125 m to 200 m. The 
initial model consisted of a linearly increasing velocity from 
the water bottom (Figure 3a).  In Figure 3c, we show the 
comparison between the field and synthetic data from the 
initial model for the initial stage of the inversion with a 
maximum full power frequency of 6 Hz. As observed, at low 
frequencies and even at intermediate offsets, there is severe 
cycle-skipping in the refracted energy. In addition, the field 
data shows strong noise particularly at far offsets. We then 
perform the inversion up to a maximum frequency of 10 Hz 
and the result is depicted in Figure 3b.  Results are validated 
by comparing the synthetic data computed from the inverted 
velocity model with the field data at different offsets (Figure 
3d) for a maximum frequency 10 Hz. Waveform fit is nearly 
perfect, and it is difficult to determine the transition from the 
field to synthetic data in the displayed offset panels.  
 
Finally, we apply our FWI with time-warping extension to 
data acquired in the Ceará Basin, offshore Fortaleza, Brazil. 
The acquisition comprises 14 multisensor streamers spaced 
100 m apart, with a maximum inline offset of 8.1 km. The 
maximum frequency used in the inversion is 6 Hz.  In the  

             
Figure 1: Normalized misfit function as a function of time shift for 
the Least-squares (solid black) and the reduced FWI objective 
functions with time-warping extension for large (dotted green), 
medium (dashed blue) and small (dash-dotted red) values of 𝜆𝜆. The 
least-squares objective function completely coincides with the 
reduced FWI objective function for a large value of 𝜆𝜆. 
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FWI with time-warping extension 
 

shallow water area, according to well-log information, there 
is a heterogeneous carbonate layer with velocities up to 3500 
m/s contrasting with those corresponding to the surrounding 
sediments (around 2500 m/s). We started the inversion from 
the model shown in Figure 4a, which corresponds to the 

sediment velocities. Due to the high velocity contrast at 
shallow depths, the shot records contain mainly refracted 
energy with limited penetration. Cycle-skipping between the 
recorded refracted energy and the one simulated from the  
simple initial model is observed even at near offsets (Figure 

 
Figure 2:  Synthetic example: (a) Marmousi model, (b) 1D initial model and  FWI models using the (c) conventional and  (d) time-warping 
extension approaches. (e) sample input shot gather,  and the corresponding modeled data for the (f) initial, and the FWI models using the  (g) 
conventional and the (h) extended domain approaches.  For reference, yellow arrows at each panel indicate the arrival time of refracted energy at 
far offsets for the true model, which is only matched by the inverted model using the new approach.  

 
Figure 3. Malaysia field data example:  (a) Initial and (b) inverted models using our approach; offset panels comparing field 
and synthetic data for (c) the initial model at 6 Hz and  (d) the  FWI model using our approach at 10 Hz. 
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FWI with time-warping extension 
 

 
5a). In Figure 4b, we show the FWI model obtained with our 
algorithm, which shows the spatial distribution of the carbo-
nates with the range of velocities provided by the sonic logs. 
Figure 5b shows the validation of our solution at the early 
VMB stage. Note that the modeled data using our FWI 
model, reduces the cycle-skipping at all offset ranges. 
 
Conclusions 
 
We have introduced a novel FWI objective function with 
time-warping extension to overcome cycle-skipping. The 
time-warping extension allows automatic transition from a 
tomography problem for overcoming cycle-skipping, to a 
conventional FWI problem for improving the resolution of 

the velocity field. It is especially useful when data lacks low-
frequencies, or the inversion starts from an inaccurate initial 
model. We successfully applied the new approach to field 
data to demonstrate that it is possible to retrieve high 
resolution velocity models starting from very simple initial 
models.  
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Figure 4: Brazil field data example:  Inline corresponding to the (a) initial model and the (b) FWI model using 
our approach. 

 
Figure 5: Brazil field data example: Comparisons of field and synthetic (offset panels) for data computed from the (a) initial and 
(b) FWI model using our approach. 
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