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ABSTRACT

The Krauklis wave is a slow dispersive wave mode that
propagates in a fluid layer bounded by elastic media. The
guided properties of this wave and its ability to generate very
short wavelengths at seismic frequency range predict possibil-
ity of resonances in fluid-filled rock fractures. Study of Krau-
klis wave properties at laboratory scales requires evaluation of
its propagation velocities in models with finite and thin elastic
walls. Analysis of an exact solution for a fluid-filled trilayer
with equal thickness plates reveals existence of the Krauklis
waves in such a model, as well as another mode which prop-
agates mostly in the solid part. Both propagation modes exist
at all frequencies. We derived and verified various asymptotic
solutions by comparing their dependencies on layer thick-
nesses and frequency with the exact numerical solution. Ana-
lytical and computational results demonstrate that in a 60-cm-
long model, the first resonant frequency can be below 10 Hz.
This result suggests that the Krauklis-wave effects can be
studied in a laboratory at seismic range of frequencies avoid-
ing a notorious problem of frequency downscaling. Strong
dispersive properties of Krauklis waves and their dominant
behavior in fluid-fracture systems are likely phenomena ex-
plaining the observed frequency-dependent seismic effects in
natural underground reservoirs.

INTRODUCTION

Propagation of waves within a trilayer model, in which the central
layer is fluid bounded by two elastic plates, is studied numerically by
Lloyd and Redwood (1965), who find a low-velocity dispersive
propagation mode in such a system. Krauklis (1962) finds and theo-
retically describes this mode, and it eventually is named after him
(Korneev, 2011). The Krauklis wave is a high-amplitude dispersive
fluid wave that propagates along a fluid layer, which is of interest for

volcanology (Chouet, 1986; Ferrazzini and Aki, 1987; Dunham and
Ogden, 2012), hydrofracturing (Ferrazzini et al., 1990; Groenen-
boom and Fokkema, 1998; Groenenboom and Falk, 2000; Korneev
et al., 2009), oil-prospecting geophysics (Goloshubin et al., 1993,
1994), thin-film testing (Coulouvrat et al., 1998), and aural physiol-
ogy (Bell and Fletcher, 2004; Elliott, 2007). Computations predict the
possibility of seismic resonances even in cases involving viscous
fluids, such as oil (Korneev, 2008). However, there is as of yet no
existing established technology that enables fracture evaluation
and monitoring based on the use of Krauklis waves. At laboratory
scale, finite wall thickness also becomes a factor that needs to be
accounted after. Laboratory measurements would enable studying
the effects of fracture-wall roughness and poroelasticity on Krauklis
wave propagation, to properly evaluate their contribution in a real
field environment. Modeling of Krauklis waves for realistic geom-
etries is a challenging computational problem because such modeling
requires using highly variable grids, with grid size inside of a fracture
possibly several orders of magnitude smaller than an embedding
medium (Frehner and Schmalholz, 2010). Although some asymptotic
results for a trilayer model already exist (Coulouvrat et al., 1998;
Bell and Fletcher, 2004), they have not yet been compared with exact
solutions.
In this paper, we evaluate low-frequency symmetric modes for a

trilayer model filled with a nonviscous fluid. Depending on the model
parameters, the Krauklis wave can propagate either in “thin-wall” or
“thick-wall” regimes. We formulate the conditions for each propa-
gation regime. Numerical evaluations of a set of hypothetical param-
eters for marble plates suggest the possibility of laboratory resonance
excitation for frequencies below 10 Hz, allowing us to study field-
scale frequencies at laboratory-scale dimensions.

THEORY

Statement of the problem

Consider a trilayer model (Figure 1), in which a central layer
(j ¼ 1) with thickness h consists of a nonviscous fluid and two
adjacent layers (j ¼ 2) are elastic and both have thickness H.
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Layers are aligned along the x axis of the x spatial coordinate.
The z axis is orthogonal to the layer interfaces, with the origin in
the middle of the fluid layer. We are interested in waves propagating
along the layer surfaces. The time t dependence of the fields is taken
in the form expð−iωtÞ, with angular frequency ω, and i ¼ ffiffiffiffiffiffi

−1
p

.
Displacements uðjÞ in both layers j ¼ 1; 2 obey the equations of

motion:

ðλj þ μjÞ∇∇ · uðjÞ þ μjΔuðjÞ þ ω2ρjuðjÞ ¼ 0 (1)

and can be represented as the sum

uðjÞ ¼ uðjÞP þ uðjÞS ; (2)

where uðjÞP and uðjÞS are compressional and shear components,
respectively. These components obey the equations

∇ × uðjÞP ¼ 0; ∇ · uðjÞS ¼ 0; (3)

and they relate to potentials φj and ψ j through the following equa-
tions:

uðjÞP ¼ ∇φj; (4)

uðjÞS ¼ ∇ × ðψ jy1Þ; (5)

where the unit vector along the y axis y1 is used. The potentials obey
the equations

Δφj þ
ω2

V2
Pj
φj ¼ 0; (6)

Δψ j þ
ω2

V2
Sj

ψ j ¼ 0; (7)

describing the longitudinal (P-) waves with velocities

VPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λj þ 2μj

ρj

s
; (8)

and shear (S-) waves with velocities

VSj ¼
ffiffiffiffiffi
μj
ρj

r
; (9)

expressed through Lamé constants λj, μj, and density ρj, where
ðj ¼ 1; 2Þ. For the fluid layer μ1 ¼ 0, and correspondingly, ψ1 ¼ 0.
We consider the wave modes, which are symmetrical with respect

to the central axis of the fluid layer and propagate along the inter-
faces with the (real and positive) wavenumbers kx ¼ ω∕V, where V
is the propagation phase velocity. In such a case, the potentials have
the forms

φ1 ¼ A1

�
ekx

ffiffiffiffiffiffiffiffiffi
1−α2

P1

p
z þ e−kx

ffiffiffiffiffiffiffiffiffi
1−α2

P1

p
z

�
eikxx; (10)

for the fluid layer, and

φ2 ¼
�
Að1Þ
2 e−kx

ffiffiffiffiffiffiffiffiffi
1−α2

P2

p
ðz−h∕2Þ

þ Að2Þ
2 ekx

ffiffiffiffiffiffiffiffiffi
1−α2

P2

p
ðz−h∕2−HÞ

�
eikxx; (11)

ψ2 ¼ i

�
Bð1Þ
2 e−kx

ffiffiffiffiffiffiffiffiffi
1−α2

S2

p
ðz−h∕2Þ

þ Bð2Þ
2 ekx

ffiffiffiffiffiffiffiffiffi
1−α2

S2

p
ðz−h∕2−HÞ

�
eikxx; (12)

for the elastic layers j ¼ 2. In equations 10–12, we used the nota-
tions

αPj ¼
ω

kxVPj
¼ V

VPj
; αS2 ¼

ω

kxVS2

¼ V
VS2

; ðj ¼ 1; 2Þ;

(13)

and Aj and B2 are constants determined by satisfying the boundary
conditions

uð1Þz ¼ uð2Þz ; at z ¼ h∕2; (14)

tð1Þzz ¼ tð2Þzz ; at z ¼ h∕2; (15)

tð2Þxz ¼ 0; at z ¼ h∕2; (16)

tð2Þzz ¼ 0; at z ¼ h∕2þH; (17)

tð2Þxz ¼ 0; at z ¼ h∕2þH; (18)

requiring continuity of the normal component uðjÞz of the displace-

ment field, continuity of the normal component for stress tðjÞzz , and

free-surface conditions for the horizontal stress component tð2Þzx . Ex-
pressions for the fields from equations 14–18 have the forms

H

h

H

Elastic

Elastic

Fluid

z

x j = 1

j = 2

j = 2

Figure 1. Trilayer model geometry.
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uðjÞx ¼ ∂φj

∂x
−
∂ψ j

∂z
; (19)

uðjÞz ¼ ∂φj

∂z
þ ∂ψ j

∂x
; (20)

τðjÞxz ¼ μj

�
∂uðjÞx

∂z
þ ∂uðjÞz

∂x

�
; (21)

τðjÞzz ¼ ðλj þ 2μjÞ∇ · uðjÞ − 2μj
∂uðjÞx

∂x
: (22)

With these choices for fields, if we satisfy boundary conditions at
the interfaces z ¼ h∕2 and z ¼ h∕2þH, similar conditions will be
automatically satisfied at the other two interfaces z ¼ −h∕2
and z ¼ −h∕2 −H.
Velocities of the interface waves propagating along the interfaces

of the model are the solutions of the equation that represent the
boundary condition:

������������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2P1

p
ς−ðαP1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2P2

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2P2

p
eP eS

ρ1V2ςþðαP1Þ∕2μ2 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2S2

p
beP −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2S2

p
eS

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2P2

p
b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2P2

p
eP beS

0 beP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2S2

p
eS b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2S2

p
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2P2

p
eP beS −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2P2

p
b

������������
¼0;

(23)

for the vector of unknowns A1; A
ð1Þ
2 ; Bð1Þ

2 ; Að2Þ
2 ; Bð2Þ

2 , where

ς�ðαP1Þ ≡ ekx
ffiffiffiffiffiffiffiffiffi
1−α2

P1

p
h
2 � e−kx

ffiffiffiffiffiffiffiffiffi
1−α2

P1

p
h
2; (24)

eP ≡ e−kx
ffiffiffiffiffiffiffiffiffi
1−α2

P2

p
H; (25)

eS ≡ e−kx
ffiffiffiffiffiffiffiffiffi
1−α2

S2

p
H; (26)

b ¼ 1 −
α2S2
2

(27)

We are searching for the roots of equation 23, which exist at low
frequencies, i.e., they can infinitely closely reach the zero fre-
quency. As shown below, there are two such roots, where the first
root V1 corresponds to a mode propagating primarily in the fluid,
and the second root V2 corresponds to a mode propagating pri-
marily in the elastic medium. Both roots are real (no attenuation)
and can be found exactly by a numerical grid search method. For the

limiting cases of plate thicknesses, the analytic asymptotic solutions
can be obtained.

Thick-wall case

When H → ∞, all the matrix elements containing functions eP
and eS vanish. Then, the upper 3 × 3 submatrix in equation 23 gives
the equation

qRξ1 −
α2S2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

q
¼ 0; (28)

where

R ≡ b2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2S2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

q
; (29)

q ¼ 2μ2
V2ρ1

; (30)

ξ1 ¼ tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P1

q kxh
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P1

q
; (31)

for the Krauklis wave with velocity V1 ≈ VK when plate thick-
nesses are infinitely large and exponentially decaying surface waves
related to a fluid do not interact with the outer boundary. By VK, we
denote an exact solution of the (Krauklis) equation 28.
At low frequencies, when

����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P1

q kxh
2

���� < 1; (32)

and approximation

tanhðxÞ ≈ x; (33)

can be used in equation 28, the Krauklis-wave velocity has the
form

V1 ≈ VK ≈ VK0 ≡
�
ωhμ2
ρ1

ð1 − γ2Þ
�1

3

; (34)

where the elastic velocity ratio is γ ¼ VS2∕VP2. Equation 34 de-
scribes a thick-wall propagation regime for the Krauklis wave, in
which the wave processes in the fluid layer are not affected by
the presence of the outer free surfaces z ¼ �ðh∕2þHÞ.
For the same assumption H → ∞, the lower 2 × 2 submatrix

from expression 23 gives the equation

R ¼ 0; (35)

for the Rayleigh wave propagating with constant velocity
V2 ≈ VR < VS2 along the outer free surface z ¼ �ðh∕2þHÞ.

Krauklis wave in a trilayer L35
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At high frequencies, equation 28 takes the form of a Scholte
equation:

qR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P1

q
−
α2S2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

q
¼ 0; (36)

which has a nondispersive real solution. Solution VSh of equation 36
has a slightly lower value than the lowest velocity in the model (VS2

or VP1).

Thin-wall case

To derive a low-frequency asymptote for thin plates, we find it
convenient to introduce new unknowns:

AS ¼ Að1Þ
2 þ Að2Þ

2 ; (37)

BS ¼ Bð1Þ
2 − Bð2Þ

2 ; (38)

and

AA ¼ Að1Þ
2 − Að2Þ

2 ; (39)

BA ¼ Bð1Þ
2 þ Bð2Þ

2 ; (40)

which correspondingly describe symmetric and asymmetric field
components of the P- and S-fields in elastic layers.
Then, for the vector of unknowns A1; AS; BS; AA; BA, we have

from equation 23,

������������

qξ1 ξ2 χ2 1 1

1 1−α2S2∕2 1
1−α2

S2
∕2

1−α2
P2

ξ2 ð1−α2S2Þχ2
0 ξ2 ð1−α2S2∕2Þχ2 1 ð1−α2S2∕2Þ
0 1−α2S2∕2 1 − 1−α2

S2
∕2

1−α2
P2

ξ2 −ð1−α2S2Þχ2
0 −ξ2 −ð1−α2S2∕2Þχ2 1 ð1−α2S2∕2Þ

������������
¼ 0;

(41)

where we used the notations

ξ2 ¼ tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

q kxH
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2P2

q
; (42)

χ2 ¼ tanh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2S2

q kxH
2

�
∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2S2

q
: (43)

Equation 41 can be further simplified to the form�����������

qξ1 ξ2 χ2 1 1

1 2− α2S2 2 0 0

0 ξ2 ð1− α2S2∕2Þχ2 0 0

1 0 0 2
1−α2

S2
∕2

1−α2
P2

ξ2 2ð1− α2S2Þχ2
0 0 0 1 ð1 − α2S2∕2Þ

�����������
¼ 0;

(44)

giving the following relations:

ξ2AS þ
�
1 − α2S2

2

�
χ2BS ¼ 0; (45)

AA þ
�
1 − α2S2

2

�
BA ¼ 0; (46)

which reduce equation 41 to the 3 × 3 determinant for the un-
knowns A1; AS; AA: ��������

2bqξ1
α2
S2

−ξ2 −1
1 a22 0

1 0 a33

��������
¼ 0; (47)

where

a22 ¼ 2

�
b −

χ2
bξ2

�
; (48)

a33 ¼ 2

�
bξ2

1 − α2P2
−
ð1 − α2S2Þχ2

b

�
: (49)

Thus, equation 47 can be written in the form

qξ1a22a33 þ ξ2a33 þ a22 ¼ 0: (50)

Note that equation 50 has the same roots V1 and V2 as the origi-
nal equation 23.
Using expansion 33 for ξ1 and expansion

tanhðxÞ ≈ x −
x3

3
; (51)

for the functions ξ2 and χ2, from equation 50, we obtain two
roots:

V1 ≈ V�
K0 ≡

�
ω4H3μ2ð1 − γ2Þ

6ρ1

�1
6

¼
�
1

6

�1
6 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωHVK

p
≈ 0.742

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωHVK

p
; (52)

L36 Korneev et al.
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for the thin-wall asymptote of the Krauklis wave, and

V2 ≈ VL ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
VS2 (53)

for the symmetric Lamb wave in the elastic plate.
Depending on the parameters, the thick-wall regime may or may

not exist for a particular model. This regime occurs when a high-
frequency field, although not affected by the outer free surfaces, is
still affected by the other interface of the fluid layer. The transition
conditions between different regimes are satisfied when the veloc-
ities for those regimes are approximately equal (Korneev, 2010).
Thus, the Krauklis wave transforms into a Scholte wave when

VSh ¼ VK0; (54)

and the transition between a Krauklis wave in the thin-wall regime
and a Krauklis wave in the low-frequency regime of two half-spaces
occurs when

V�
K0 ¼ VK0: (55)

NUMERICAL RESULTS

We performed computations with a model consisting of a water
layer with parameters VP1 ¼ 1500 m∕s, ρ1 ¼ 1000 kg∕m3, be-
tween two marble plates with parameters VP2 ¼ 5587 m∕s,
VS2 ¼ 3135 m∕s, and ρ2 ¼ 2670 kg∕m3. Figure 2 shows the
dispersion curves of phase velocities with their asymptotes as func-

tions of frequency, for the model of a 1-mm-thick fluid layer and
3-cm-thick elastic plates. Shown are the exact solutions V1 and V2

obtained by a root grid search for equation 50 and solutions of equa-
tions 28, 35, and 36, representing Rayleigh (VR), Krauklis (VK),
and Scholte (VSh) waves, respectively. Also shown are the thick-
wall (solution VK0 of equation 34) and thin-wall (solution V�

K0

of equation 53) asymptotes for the Krauklis wave. The transition
conditions 54 (I) and 55 (II) are marked by circles. In Figure 3,
the same curves are shown as a function of the elastic plate’s thick-
ness for a 20-Hz frequency. Figure 4 shows the phase velocity of the
Krauklis wave as a function of frequency for fixed values of the
elastic plate’s thickness. When the thickness of the elastic plates
decreases, the phase velocity of the Krauklis wave increases. At
the high-frequency limit, the Krauklis wave becomes a nondisper-
sive Scholte wave.
Predictions of low-frequency resonances were used for a model

made of water and marble with a 1-mm-thick fluid layer, 3-cm-thick
elastic plates, and 60-cm-long trilayer. We assume rigid conditions
for both ends. Resonance conditions for a trilayer with length l:�

lfn
V1

�
¼

�
nþ 1

2

�
; n ¼ 0; 1; 2; : : : (56)

assume that at the fracture tips, fluid displacement becomes zero.
For the parameters used above, the resonance frequencies for the
first three modes are: f0 ¼ 6.9 , f1 ¼ 178, and f2 ¼ 794 Hz.
To simulate a propagation of the Krauklis wave excited by a

point-pressure source along a center axis of the model, we used
OASES software (Schmidt and Tango, 1986; Schmidt, 2004).
The fluid layer with 1-mm thickness has parameters VP1 ¼
1500 m∕s, ρ1 ¼ 1000 kg∕m3, and the elastic plates have parame-
tersVP2 ¼ 4200,VS2 ¼ 2500 m∕s, and ρ2 ¼ 2700 kg∕m3. Figure 5

Figure 2. Phase velocities of surface waves in a trilayer with marble
plates as functions of frequency. Shown are the solutions V1 and V2
of the exact equation 50 and solutions of equations 28, 35, and 36,
representing Rayleigh (VR), Krauklis (VK), and Scholte (VSh)
waves, respectively. Also shown are the thick-wall (solution VK0
of equation 34) and thin-wall (solution V�

K0 of equation 53) asymp-
totes for the Krauklis wave. The blue dot indicates the transition
condition 54. The red dot indicates the transition condition 55.
Velocities are normalized by the shear velocity.

Figure 3. Phase velocities of surface waves in a trilayer with marble
plates as functions of plate thickness. Notations are the same as on
Figure 2.

Krauklis wave in a trilayer L37
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shows the dominant horizontal component of the field when the
plate thickness is 3 cm (a) and when it is infinite (b). The interval
between data points is 5 m. For a Ricker wavelet (a first derivative of
the Gaussian bell) with dominant frequency 50 Hz was used. The
finite plate case exhibits the stronger dispersion because it follows
from equations 52 and 34.

DISCUSSION

As in the case of alternating fluid-elastic layers (Korneev, 2011),
in the trilayer model there are two main modes of propagation for
surface waves: (1) primarily in the elastic plates, in the form of a
symmetrical Lamb wave for small-plate thickness, and in the form
of a Rayleigh wave, when a large enough thickness enables this
wave to propagate along the outer surfaces with exponentially
decaying amplitude, and (2) primarily in the fluid, in the form
of a Krauklis wave with strong dispersion, unless the fluid layer
thickness (or high frequency) makes it a nondispersive Scholte
wave. The dispersion of a Krauklis wave for finite thin walls is
stronger than in a model with elastic half-spaces because of the
low compliance of thin plates. Different wave-propagation regimes
smoothly interchange at the transition zones described by condi-
tions 54 and 55. Equation 53 can also be derived from equation 8
in Coulouvrat et al. (1998), who use a different analytical approach,
assuming an engineering application for adhesive-tape testing. This
helped in validation of the derived results.
Krauklis waves are considered to have great potential use in

studying fluid-filled fractures because such waves are a main mode
of propagation there, with highest amplitude compared with all
other waves. Our numerical examples suggest that excitation of
Krauklis waves at a seismic range of frequencies is possible at a
laboratory scale. This finding solves the notorious problem of fre-
quency downscaling from an ultrasonic range, typically confronted
in rock laboratories with field scales. One potential problem in ap-
plying the obtained results is in the assumption of infinitely long
model walls. In practice, the length of the model will be finite,
and the wall’s compliance will likely vary along the wall surface,
especially at the edges. This problem could then potentially require
a more complex analytical or numerical approach.
After successful detection of the Krauklis wave, laboratory stud-

ies could potentially expand to more complex and realistic fracture
properties and geometries, which are hard to handle using analytical
methods.

CONCLUSIONS

Within a trilayer model, the Krauklis wave can propagate in a
thin-wall regime with velocities significantly lower than in a model
with half-space elastic media. Analytical conditions allow evalu-
ation of the transitions between different asymptotes of the Krauklis
wave. At high frequencies, the Krauklis wave becomes a Scholte
wave. All obtained asymptotes are verified by comparison with ex-
act solutions. Resonance conditions for the Krauklis wave predict
the existence of resonances within seismic frequency range at lab-
oratory scale. If verified, this would allow studies of the Krauklis
wave in a variety of realistic models simulating fluid-filled frac-
tures. Strong dispersive properties of Krauklis waves and their dom-
inant behavior in fluid-fracture systems are likely phenomena
explaining the observed frequency-dependent seismic effects in
natural underground fluid reservoirs.
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