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Summary 
 
Despite technological advancements in marine seismic multisensor acquisition and processing, noise 

attenuation remains a fundamental step in the early processes for producing high-quality upgoing 

pressure wavefield data. If we assume the main shortcoming of traditional methods is in the noise 

detection step, deep learning can be used in only the detection step and the selected noise attenuation 

engine can be automatically guided by the deep learning noise classification. We have created different 

deep learning models to detect a variety of noise types present in both marine hydrophone and geophone 

records. These models are used to automatically classify the samples in the noise attenuation workflows 

and pass the samples to the appropriate noise attenuation steps. Targeted noise detection lets us perform 

a better targeted noise attenuation with appropriate levels of harshness without undue concern over 

possible signal loss. Models can also be used at any step of the processing to classify the samples in 

both hydrophone and geophone records. The improvement in noise attenuation and its impact on the P-

UP generation is presented for a real dataset.  The advantages to turnaround and quality that arise from 

the use of these workflows are discussed. 
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Stepping Towards Automated Multisensor Noise Attenuation Guided by Deep Learning 

 

Introduction 

 

Despite technological advancements in marine seismic multisensor acquisition and processing, noise 

attenuation remains a fundamental step in the early processes for producing high-quality upgoing 

pressure wavefield (P-UP) data. As the nature and level of noise often varies during a survey, the 

traditional approach of using one fixed set of parameters in the selected noise attenuation algorithm is 

often sub-optimal. For example, on hydrophone records the level of swell noise can vary significantly 

throughout a survey. For records with a low level of swell noise, a mild noise attenuation is needed, but 

if there are records contaminated with a much higher level of swell noise, a harsher noise attenuation 

should be applied to only those records. In traditional algorithms, such as FX filters, we usually rely on 

amplitude-based statistical methods to locate the noisy samples. However, it is obvious that such 

approaches can, for example, mistake isolated high amplitude signal for noise or spatially wide bands 

of noise as signal. 

 

The entire process of swell noise attenuation can be replaced by deep learning methods (e.g., Zhao et. 

al., 2019). Alternatively, if we assume the main shortcoming of traditional methods is in the noise 

detection step, deep learning can be used in only the detection step (e.g., Farmani and Pedersen, 2020a 

and 2020b). One advantage of using deep learning for noise detection is that it has been shown it can 

reliably classify the samples. For example, high amplitude isolated signal and wide bands of noise do 

not present a problem for the classification. Therefore, the selected noise attenuation engine can be 

automatically guided by the deep learning noise classification. This has provided the flexibility to 

progressively increase the harshness of the noise attenuation without undue concern over possible signal 

loss. Other types of noise such as turn noise, current noise, door wash noise and impact spikes are 

commonplace in hydrophone records. Such type of noise may need an additional dedicated workflow. 

Therefore, we have extended Farmani and Pedersen (2020b) methodology to detect, distinguish and 

attenuate the above types of hydrophone noise.  

 

We have created different deep learning models to detect a variety of noise types present in both marine 

hydrophone and geophone records. These models are used to automatically classify the samples in the 

noise attenuation workflows and pass the samples to the appropriate noise attenuation steps. Targeted 

noise detection lets us perform a better targeted noise attenuation with appropriate levels of harshness. 

Models can also be used at any step of the processing to classify the samples in both hydrophone and 

geophone records. The improvement in noise attenuation and its impact on the P-UP generation is 

presented for a real dataset.   

 

Methodology 

 

The workflows consist of three main elements: deep learning classification networks, FX deconvolution 

filters and FX projection filters. We use the U-Net network to classify the samples. U-Net is a 

convolutional network developed by Ronneberger et al. (2015) for the classification of medical images. 

This network has been used in the seismic industry to address different classification and regression 

problems. Depending on the type and frequency of the targeted noise, we use different FX filters with 

different pre-defined parameters. In general, FX filters are wrapped with a classification network and 

the harshness of the filtering progressively increases as workflow advances further. In this way we can 

further attenuate any remnant noise in each successive step whilst reducing the chance of signal loss. 

The workflows are automated in the sense that no user parameterization is required since the workflows 

decide by themselves where they need to remove more noise and which parameters should be used. 

 

The hydrophone workflow uses three U-Net networks (Figure 1a). All hydrophone networks have four 

down-sampling and up-sampling steps, and there are 16 filters for the first encoder. Since noise on the 

hydrophone records is generally confined to lower frequencies, input traces to the networks are down-

sampled. The networks have three or four output classes: signal, noise, signal-and-noise, and mask. 
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Mask represents the zero samples. For more general detailed information about the network and its 

performance refer to Farmani and Pedersen (2020a). All models were trained using a combination of 

real data from different surveys. Firstly, a U-Net network (U-Net H1 in Figure 1a) was trained to detect 

swell, turn and door wash noises with frequencies above 10 Hz. The classified noisy samples are further 

subclassified into two groups of wide-band and local noise and are processed separately. Wide-band 

noise is defined as noise spreading on more than dozens of traces for more than couple of seconds. A 

second U-Net network (U-Net H2 in Figure 1a) was trained to detect the same types of noises but with 

frequencies below 10 Hz. This network is used twice in the hydrophone workflow. A third U-Net 

network (U-Net H3 in Figure 1a) was trained to find the possible signal leakage in the energy attenuated 

in the previous step which is added back to the signal before the process moves on to the next step. At 

the end of the workflow a map is created containing the percentage of noisy samples for each trace 

which gives a quick overview of the performance of the network for quality control (QC). Note that this 

QC map can be generated for any input at any stage if required. 

 

The geophone workflow uses two U-Net networks (Figure 1b). Both networks have four down-sampling 

and up-sampling layers like the hydrophone. However, the first encoder with 16 filters is applied after 

the first down-sampling. Both geophone networks were trained using synthetic and real data from cold-

water surveys. One network detects the noise with frequencies above 30 Hz (U-Net G1 in Figure 1b) 

and the other one detects noise with frequencies below 30 Hz (U-Net G2 in Figure 1b). A similar QC 

map as for the hydrophone is also generated for the geophone at the end of the workflow. 

 

        
Figure 1: flowcharts of the noise attenuation workflows for a) hydrophone and b) geophone records. 

 

Both hydrophone and geophone workflows have been extensively tested on different surveys and 

consistently produce very encouraging results. Note that even though workflows have been developed 

to be generic, it is still possible to change the embedded noise attenuation engine or its parameterisation 

if needed.  Alternatively, an additional noise attenuation pass can be applied if the final QC map shows 

any localized residual noise remaining in the data.  

 

Example 

 

Data selected for this example were acquired using a dual-sensor streamer in the North Sea. Both 

hydrophone and geophone components were processed using the workflows described above. Figure 2a 

shows the hydrophone shot gathers before noise attenuation. Note the strong swell noise on the last two 

shot gathers. All noise was effectively attenuated (Figure 2b) without any evidence of signal leakage in 
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the attenuated noise model (Figure 2c). The coherent dipping energy evident in Figure 2c was removed 

by the FK filters in the workflow. Figure 3a shows the geophone records for the same shot gathers. The 

dominant noise on the geophone records is mechanical vibrations associated with attached devices. 

Swell noise is also present on the third shot gather. The geophone noise attenuation workflow was able 

to remove majority of the noises (Figure 3b) without any visible signal loss (Figure 3c). Our experience 

so far shows that the presented workflows are in general able to remove more noise from both 

hydrophone and geophone records compared to conventional user designed workflows. This is because 

more cascaded filters exist in the workflow than what a user would in general design using one or a few 

test lines. Since we identify the noisy samples using U-Net networks before the application of the filters, 

each filter is triggered only when it is needed and hence, the signal preservation will be naturally 

guaranteed for the samples that do not contain the noise targeted in each step of the workflows. 

 

 
Figure 2: Shot gather examples of hydrophone records a) before and b) after the noise attenuation. c) 

noise attenuated by the workflow. 

  

 
Figure 3: Shot gather examples of geophone records a) before and b) after the noise attenuation. c) 

noise attenuated by the workflow. Displays have 20-25 Hz Ormsby lowcut filter which was used as low 

frequency compensation in P-UP generation. 

 

Cleaner hydrophone and geophone records naturally produce a cleaner P-UP with a better signal to 

noise ratio. In addition, clean data also helps the interpolation algorithm to produce better interpolated 

traces which are usually needed to satisfy the Nyquist sampling criterion for P-UP generation. In Figure 

4 we show a comparison between a P-UP QC stacked section from the same line generated using legacy 

noise attenuation (Figure 4a) and the equivalent stack created using the presented noise attenuation 

workflows (Figure 4b). The stacked section has a bandpass filter of 31-62 Hz applied which covers the 

frequencies of the first hydrophone notch for this acquisition such that the majority of the signal is 

derived from the geophone. From inspection of weaker amplitude reflectors, we see that P-UP generated 

after the presented noise attenuation workflows (Figure 4b) has better signal to noise ratio compared to 

the legacy stack (Figure 4a).    

 

Conclusions 

 

a) b) c) 

a) b) c) 



 

 

83rd EAGE Annual Conference & Exhibition 

Noise attenuation workflows have been designed for both marine hydrophone and geophone records 

where different U-Net networks have been used to classify the noisy samples at several steps of the 

workflows. In each step a combination of FX filters has been designed to attenuate the noise for the 

samples identified as noisy by U-Net networks. In the hydrophone workflow one U-Net network is also 

used to detect any signal leakage in the noise model which is then added back to the records. U-Net 

networks also generate QC maps for performance assessment. Both workflows have shown encouraging 

performance without any user interaction and can, in general, produce consistently cleaner hydrophone 

and geophone records compared to what could traditionally be achieved. We also demonstrate that this 

cleaner data has a direct measurable impact on the P-UP quality. 

The advantages to turnaround and quality that arise from the use of these workflows are abundantly 

clear.  Firstly, under most circumstances there is now no need for a denoise testing phase ahead of 

production.  Secondly, the automation of the noise classification means the user is no longer required to 

pick out subsets of the dataset for additional specific harsher noise attenuation workflows.  Finally, the 

successful accurate classification has significant benefits to both the quality of the output and the time 

the user spends reviewing QC displays as the user is quickly directed towards any ambiguities. 

 

 
Figure 4: P-UP stack 31-62 Hz with a) legacy noise attenuation and b) deep learning guided noise 

attenuation.  
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