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Summary 
 
Full Waveform Inversion (FWI) requires the minimization of a highly non-linear objective function 

which makes the inversion suffer from cycle-skipping. To overcome this issue, we need to have an 

accurate initial velocity model and/or input seismic data with good low-frequency content. However, 

low frequencies can be very noisy, and conventional noise attenuation tools fail to recover the useful 

signal. In this abstract, we propose to apply a novel low-frequency reconstruction method to condition 

the data for Full Waveform Inversion. The reconstruction is done from the higher frequencies using a 

recursive filter which is estimated from the data itself. We apply the low-frequency reconstruction 

method on synthetic data to show its high accuracy even in presence of strong noise extracted from field 

data. We successfully performed FWI using low frequency reconstructed field data starting from simple 

velocity models. The reconstructed low frequencies help to mitigate the cycle-skipping observed when 

these frequencies cannot be utilized in the inversion and the initial models are not accurate. Results 

demonstrate the effectiveness of the novel data reconstruction method and show its benefits in reducing 

the turnaround time for building accurate velocity models by FWI, when starting from less suitable 

initial velocity models. 
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Full Waveform Inversion with low frequency reconstructed data 

Introduction 

Full waveform inversion (FWI) is based on the minimization of the misfit error measured between the 

field data and the numerically modelled data using an approximate earth model (Tarantola, 1984). As 

the cost function is highly nonlinear, FWI can suffer from convergence to local minima, known also as 

cycle-skipping. This leads to an incorrect inverted model and undermine the use of FWI.  

Many strategies have been proposed in the literature to deal with this problem. Luo and Schuster (1991) 

proposed using the time-lag as an alternative objective function to reduce the nonlinearity of the FWI 

problem. Choi and Alkhalifah (2013) used the phase derivative which can unwrap the phase and 

improve the convergence to the global minimum. Extended domain FWI (Symes, 2008) is another class 

of methods, where an extension in the model or the data domains improves the convexity of the objective 

function. Huang et al. (2021) proposed a FWI objective function using time-warping extension. The 

problem is solved in a single objective function using the Alternate Direction Method (ADM) and was 

successfully applied to field data with poor low-frequency content.  

Despite the progress in improving the convexity of the objective function in FWI, low frequencies are 

still vital to mitigate the cycle-skipping problem and at the same time, to better reconstruct the 

background velocity model, particularly in complex geological settings. Noise attenuation is routinely 

used to enhance the signal-to-noise ratio (SNR) at low frequencies. However, this solution fails when 

the input SNR is very poor. As an alternative, a lot of efforts have been put to reconstruct the useful low 

frequencies using methods that range from signal processing (Li and Demanet, 2016) to machine 

learning techniques (Ovcharenko et al., 2017).  

In this abstract, we show the results of applying our recently developed method for Low Frequency 

Reconstruction (LFR) to improve the FWI results (Bekara et al., 2022). The method is applied on both 

synthetic and field datasets and demonstrates a clear advantage in helping FWI to minimize cycle-

skipping. We briefly describe the LFR approach and the FWI algorithm, then we show the low-

frequency reconstruction and FWI applications results. 

Method 

The reconstruction is carried out from the higher frequencies using a recursive filter which is estimated 

from the data itself. The method transforms the data locally, over sliding data windows, from the time-

space domain to the frequency-slowness domain where the reconstruction is performed. The data 

transformation is important to enforce the sparsity assumption of the signal, include the spatial 

correlation in the data and honour the constraint of the “signal cone” of the wavefield. In addition, the 

reconstruction is done stepwise, i.e., a frequency sample is reconstructed at each step with a re-

estimation of the recursion model (Bekara et al., 2022). 

To demonstrate the benefits of the reconstruction of the low frequencies in FWI, we use an inversion 

algorithm based on the conventional �� objective function formulated as follows: 
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where � is the velocity model, ���� is the synthetic data and 
 is the field data. 

We apply a multiscale approach starting from the lowest available frequencies to achieve optimal 

convergence to the right model. Because reflections in addition to refractions are used in the inversion, 

at the initial inversion stages, we use the gradient kernel proposed by Ramos-Martinez et al., (2016), 

which enhances the long wavelengths and removes the high wavenumber migration isochrones. We 

show FWI results on the synthetic Marmousi II model and two field datasets from offshore Malaysia 

and Angola.  

Synthetic example  

For this synthetic example, the source/receiver geometry mimics a typical streamer acquisition with a 

maximum offset of 8 km. The source wavelet is a Ricker wavelet with 16 Hz peak frequency. Figure 1-

a shows the modelled data (noise free) in the 1-4 Hz frequency band. In Figure 1-b, we add low-

frequency noise extracted from field data. The noise is very strong and the SNR equals -46dB at 2 Hz, 
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and -18dB at 4 Hz which makes conventional denoising processes ineffective. Figure 1-c shows the 

result of the application of a sequence of F-X projection and F-X prediction filters in various data sorting 

domains. The LFR result is shown in Figure 1-d. Frequencies below 4 Hz are reconstructed using higher 

frequencies (4-8 Hz). The quality of the data is considerably improved and most of the events are 

recovered with high accuracy.  

We run two multi-stage FWI tests for denoised and LFR data up to 16 Hz (1-4 Hz; 2-6 Hz; 2-8 Hz; 2-

12 Hz; 2-16 Hz). For the denoised data the first stage is ignored, and the inversion starts with 2-6 Hz 

frequency band. The initial model for both tests is a heavily smoothed version of the true model. With 

this model, FWI from the conventionally denoised data converges to a local minimum as shown in 

Figure 2-c. In contrast, the LFR data enables FWI to start at a frequency band in which there is no cycle-

skipping. Therefore, the inversion converges to a nearly perfect model (Figure 2-d).  

Field data examples  

We applied the proposed LFR method to enhance the low-frequency content of field seismic data, as an 

alternative data conditioning to conventional denoising for FWI applications. The first dataset 

corresponds to a towed-streamer line acquired offshore Malaysia using the continuous wavefields 

method (Klüver et al., 2020). Data were acquired utilizing multi-sensor technology with a maximum 

inline offset of 8.1 km. We perform two FWI tests with and without low-frequency reconstruction (< 

4Hz). The initial velocity model is a constant gradient model which produces clear cycle-skipping even 

at intermediate offsets as observed in the comparison of field and modelled data (Figure 3-c). Also, it is 

evident that the initial velocity field requires positive updates in the shallow part of the model. For the 

LFR data, we performed FWI in a multi-stage fashion up to 16 Hz (at stages of 1-2 Hz, 1-3 Hz, 2-4 Hz, 

2-6 Hz, 2-8 Hz, 2-12 Hz and 2-16 Hz). For the test without LFR data, the first three stages were not 

possible because of the poor SNR at those frequency bandwidths. The final FWI results are shown in 

Figures 3-a and 3-b and there is a clear difference between the two models. We carried out modelling 

to assess the two solutions. After FWI with no LFR, the slow-down in the shallow part of the model 

moved the modelled data to the wrong direction (Figure 3-d). In contrast, the synthetic data computed 

with the FWI model obtained from LFR data, matches very well the field data as shown in Figure 3-e. 

We also performed migration and computed the angle gathers from both final models to further evaluate 

the results. Migrated stack computed from the FWI model using LFR data (Figure 4-b) shows a better 

Figure 1 Marmousi II 

synthetic example.  Input 

shot gathers for a 1 to 4Hz 

frequency bandwidth. (a)  

Noise-free gathers; (b) 

gathers with added actual 

field data noise; (c) gathers 

after conventional 

denoising; (d) gathers after 

applying LFR. 

Figure 2 Marmousi II synthetic example. (a) True, (b) initial, and inverted models using data with (c) 

conventional denoising and (d) LFR. 
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reflector continuity and energy focusing compared to that obtained from the FWI model with no LRF 

data (Figure 4-a). This is validated by comparing the gather flatness for both models (Figures 4-c and 

4-d).  

The second field data example corresponds to multi-sensor data acquired in offshore Angola. The 

original data is only cycle-skipped in a small part of the model shown by the black ellipses in Figure 5-

a, 5-b. Synthetic data computed from the initial model (Figure 5-c) for the shot located on top of this 

area (Shot 1), shows poor data fitting at mid-offsets and stronger mismatch at far-offsets, where the 

cycle-skipping is evident. We show in Figure 5-a and 5-b the FWI updates without and with LFR, 

respectively. The updates are similar in most areas except at the area highlighted by the black ellipses. 

The LFR of data changed the direction of the FWI updates overcoming the cycle-skipping issue caused 

by the inaccuracy of initial model in this area. This is validated by the shot modelling from both FWI 

models (Figure 5-d, 5-e). Improvement in the waveform fitting from the FWI with LFR data is clearly 

observed in Shot 1. It is noted that the modelling (Shot 2) and results of FWI with and without LFR are 

similar for the area where there is no cycle-skipping. This illustrates that there is no harm to use LFR 

data even when the initial model is already accurate enough for starting FWI.  

Conclusions 

We have successfully applied a novel method to reconstruct the low-frequency content of seismic data 

used for FWI. The reconstruction solution is easy to deploy in production, computationally efficient and 

Figure 3 Malaysia field data example. FWI models (a) without and (b) with LFR. Comparison of field and 

modelled data from the (c) initial and the FWI models (d) without and (e) with LFR. Offset panels for field and 

modelled data are labelled with F and M, respectively. 

Figure 4 Malaysia field data example.  RTM stacks from the FWI models (a) without and (b) with LFR. RTM 

angle gathers from the FWI models (c) without and (d) with LFR. 
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does not require customized offline training as it is the case for similar solutions. The uplift of using the 

proposed solution for FWI applications is shown through data and image domain QCs of the results and 

confirms its ability for mitigating the cycle-skipping problem. This solution allows to relax the initial 

model requirements imposed by FWI and therefore leads to a reduction in the turnaround time to build 

high resolution models. 
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Figure 5 Angola field data example. FWI updates (12 Hz) using data without (a) and with (b) LFR.  Modelled 

data (colour scale) overlaying the field records (wiggle display) computed from the initial (c), FWI without LFR 

(d) and FWI with LFR (e). In the shot gather comparison, red (colour scale) and white (wiggle display) 

corresponds to negative polarities. 


