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Summary 

 

The ability to estimate a mixed phase wavelet is a useful tool for processing and quality control in 

seismic imaging. The wavelet is estimated using higher order statistics of the data.  In practice, these 

methods tend to show some instability issues when the wavelet length is increased. To improve the 

stability of the solution, this abstract proposes a new formulation of the wavelet estimation problem that 

constrains the solution to be a finite duration, phase-only compensation applied to a known base wavelet. 

The proposed solution works in the frequency domain and consists of three steps.  First, the bispectrum 

of the data is deconvolved using the bispectrum of the base wavelet to increase its bandwidth. This helps 

to improve the sensitivity of third order statistics to phase information. Then, a phase-only wavelet is 

estimated from the deconvolved bispectrum using an iterative least-squares approach without phase 

unwrapping. Finally, the estimated phase-only wavelet is conditioned using a projection onto convex 

sets type algorithm to enforce the constraint of the finite time duration giving the user a control on the 

amount of phase deviation from the base wavelet. Test examples on synthetic and real data both show 

reliable results with robustness to noise contamination.  
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Introduction 

Knowledge of the wavelet and more particularly its phase are key elements in the processing of seismic 

data. In marine seismic processing, the wavelet is closely controlled through a set of deterministic 

processes such as source/receiver deghosting, debubbling, designature and Q-compensation. Despite 

this control, phase compensation is often needed for deeper reflectors mainly due to the approximations 

in the physics behind these deterministic processes. In the absence of well-log data, estimating the 

wavelet from seismic data is important to perform this compensation. Moreover, the estimated wavelet 

can be used for quality control (QC) to assess the phase integrity of the seismic data as it progresses 

through the processing sequence. 

This abstract proposes a novel statistical method to estimate a mixed phase wavelet from seismic data. 

The method derives the amplitude spectrum of the wavelet using a smooth log-spectral estimator and 

uses higher order statistics to extract the phase information. Contrary to similar methods that use 

cumulant matching, the proposed method determines the phase of the wavelet from a deconvolved 

bispectrum of the data using a least-squares solver and without phase unwrapping. The motivation to 

bypass time domain cumulant matching is to avoid solving a complex optimization problem with many 

local minima. Even when using stochastic optimizers, the solution tends to be unstable when the wavelet 

length is large (> 50 samples) or when the signal-to-noise ratio is moderate to low. The method also 

avoids phase unwrapping as this process is highly sensitive to the presence of noise and breaks down 

when the phase profile is not smooth. The proposed method is demonstrated on both synthetic and real 

data and shows consistently robust results with regards to the noise contamination and the length of the 

wavelet.   

 

  Wavelet estimation using higher order statistics 

Most of the statistical wavelet estimation methods assume the following convolution model: 

               𝑑𝑛(𝑡) = 𝑟𝑛(𝑡) ∗ 𝑤(𝑡) + 𝜀𝑛(𝑡)  , 𝑛 = 1,2, ⋯ 𝑁,                      (1) 

where 𝑑𝑛(𝑡) is the seismic trace with index 𝑛, 𝑟𝑛(𝑡) is the corresponding reflectivity series, 𝑤(𝑡) is the 

desired wavelet and 𝜀𝑛(𝑡) is a random noise term. Equation (1) is valid only post-stack and post-

migration with an appropriate Q (phase and amplitude) compensation applied to the data. A large 

number of these methods are based upon second-order statistics (i.e., autocorrelation) and make use of 

a minimum phase or zero phase assumption. Since the mid-1980s a number of authors have used higher 

order statistics to solve the general problem of blind system identification in signal processing. These 

methods relax the assumption on the phase of the system but bring an additional requirement that the 

system input (i.e. excitation) is an independent and identically distributed non-Gaussian random 

process. In our context, this means that the reflectivity series is sparse with a white spectrum. Many 

approaches have been developed for system identification using both third and fourth order statistics in 

time (cumulant) and frequency (polyspectral) domains. A review of these methods can be found in 

Mendel (1991).  

In seismic data processing, cumulant matching techniques are the first set of higher order statistical 

methods to be practically adopted for wavelet estimation and they are considered the reference in this 

matter (Lazear, 1993). For simplicity, considering the case of a third order cumulant, these methods find 

the wavelet 𝑤(𝑡) whose third order cumulant matches that of the data in a least-squares sense, i.e., by 

minimizing the following cost function 

min
𝑤

{(∑ ∑ [𝐶𝑑
3 (𝜏1,𝜏2) −  ∑ 𝑤(𝑚)𝑤(𝑚 − 𝜏1)𝑤(𝑚 − 𝜏2)

𝑚

]

2

𝜏2𝜏1

)}          (2) 

where 𝐶𝑑
3(𝜏1, 𝜏1) is the aggregate cumulant obtained by tapering and weighted stacking of all the third 

order cumulants 𝐶𝑑𝑛

3 (𝜏1, 𝜏1) of individual traces 𝑑𝑛(𝑡), defined as: 

                           𝐶𝑑𝑛

3 (𝜏1, 𝜏1) = ∑ 𝑑𝑛(𝑡)𝑑𝑛(𝑡 − 𝜏1)𝑑𝑛(𝑡 − 𝜏2)

𝑡

                                     (3) 

The minimization problem in equation (2) is non-convex and highly nonlinear with many local minima. 

Any gradient descent solution would need an accurate initial guess otherwise it will get stuck in a local 

minimum. Velis and Ulrych (1996) proposed a stochastic global optimizer based on fast simulated 

annealing to solve this problem. However, in all their examples the length of the wavelet did not exceed 
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40 samples (160 ms). Cumulant matching methods tend to produce unstable results when the number 

of samples to estimate increases. Other sets of methods, less known in the seismic processing industry, 

use the bispectrum to estimate the phase of the wavelet (Matsuoka and Ulrych, 1984). These methods 

work in the frequency domain and are not constrained by the wavelet length. They are based on the 

following relationship that exists between the bispectrum of a trace 𝑥(𝑡) and its Fourier transform (for 

third order statistics): 

                 Γ𝑥
3(𝑓1, 𝑓2) = 𝐹𝐹𝑇2𝐷{𝐶𝑥

3(𝜏1, 𝜏2) } = 𝑋(𝑓1)𝑋(𝑓2)𝑋∗(𝑓1 + 𝑓2)            (4) 

Using the above equation, the phase of the wavelet 𝜑𝑤 is related to the phase of the bispectrum of the 

data 𝜑𝑑 as:                      𝜑𝑑(𝑓1, 𝑓2) = 𝜑𝑤(𝑓1) + 𝜑𝑤(𝑓1) − 𝜑𝑤(𝑓1 + 𝑓2)                              (5)  

Equation (5) is solved using least-squares after phase unwrapping (Zhang et al., 2009). Phase 

unwrapping is a difficult process, particularly for 2D complex signals, and is very sensitive to the level 

of noise in the data (Ghiglia and Pritt, 1998). This is the main reason the bispectrum is not practically 

used for seismic wavelet estimation.   

 

 Proposed method 

A new formulation is proposed to estimate the seismic wavelet 𝑤(𝑡) as a non-parametric phase-only 

perturbation to a known base wavelet 𝑤0(𝑡), i.e.:  

               𝑤(𝑡) = 𝑤0(𝑡) ∗ ℎ(𝑡) 

𝑤𝑖𝑡ℎ   ℎ(𝑡) = 0    |𝑡| > 𝑇 

                                                      𝑎𝑛𝑑     |𝐻(𝑓)| = 1                                                        (6)     

The problem simplifies to the estimation of a phase-only wavelet ℎ(𝑡). The gap time (𝑇) controls how 

much one wants to deviate from the base wavelet. The larger the gap value, the more phase 

compensation one can apply to 𝑤0(𝑡). The solution is developed for the case of third order statistics, 

but generalisation to fourth order is straightforward. It consists of the following three steps: 

1. Deconvolution   

Using equations (1) and (6) one can relate the bispectrum of the data with that of 𝑤0(𝑡) and ℎ(𝑡). The 

bispectrum of ℎ(𝑡) is estimated in the following least-squares sense:  

                       min
Γℎ

3 (𝑓1,𝑓2)
∑|Γ𝑑𝑛

3 (𝑓1, 𝑓2) − Γ𝑤0
3 (𝑓1, 𝑓2)Γℎ

3(𝑓1, 𝑓2)|
2

𝑁

𝑛=1

                        (7) 

The solution to the optimisation problem is the classical Weiner deconvolution filter, i.e.:  

                                    Γℎ
3(𝑓1, 𝑓2) =

1
𝑁⁄ ∑ Γ𝑑𝑛

3 (𝑓1,𝑓2)Γ𝑤0
3 (𝑓1,𝑓2)∗𝑁

𝑛=1

|Γ𝑤0
3 (𝑓1,𝑓2)|

2
+𝜖

 

                           (8)                               

The deconvolution plays the role of a whitening process that increases the bandwidth of the data and 

makes the higher order statistics more sensitive to phase information. Γℎ
3(𝑓1, 𝑓2) is then normalised and 

denoted by Γ̅ℎ
3(𝑓1, 𝑓2). 

2. Phase estimation   

Using equation (4) and rather than performing phase unwrapping, we solve for 𝐻(𝑓) directly with an 

iterative least-squares approach. Figure 1 shows the flowchart for the phase estimation. The process is 

iterative with a stable convergence property as tested on synthetic and real data sets. The initial solution 

does not affect the final one and we have found that a zero phase initial solution always gives good and 

stable results.   

3. Phase conditioning   

This step is needed to enforce the constraint on ℎ(𝑡) of being of limited time support. Figure 2a shows 

the flowchart of the algorithm, which belongs to the family of iterative projection methods, known as 

Projection onto convex sets (POCS) (Figure 2b). This algorithm is proven to converge to a solution that 

satisfies the two constraints in equation (6). 

 

Data examples 

1.   Synthetic data  

Figure 3 shows a synthetic reflectivity section that contains three reflectors and the resulting seismic 
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data (680 ms length @ 4 ms sampling) after convolving it with a wavelet of length 300 ms and adding 

some synthetic random noise. The estimated wavelet using the suggested method with 𝑻 = 200 ms and 

a zero phase base wavelet is shown in Figure 4. It compares closely to the true wavelet and its phase 

spectrum is unbiased and fluctuates around the true phase. Using a minimum phase base wavelet would 

give the same results. The amplitude spectrum is accurate and non-jittery, leading to a smooth looking 

wavelet. 

2.   Real data  

Figure 5a shows a 1000 ms window extracted from a central subline section of a final PSTM volume. 

A cube of 201x201 traces centred on the window are used to estimate a 500 ms length wavelet. The 

proposed method is tested with a zero phase base wavelet and a gap 𝑻 = 16 ms. The estimated wavelet 

(Figure 6) is not near to zero phase and this may indicate that a phase compensation is needed (ideally 

to be applied deterministically through a Q compensated depth migration). To assess the goodness of 

estimation, we apply a phase compensation to the data that removes the phase of the estimated wavelet. 

The result of this process is shown in Figure 5b. One can clearly see that many reflectors (indicated by 

arrows) become more zero phase after this process, indicating that the estimated wavelet is reliable. 

 

Conclusions 

The use of higher order statistics for mixed phase wavelet estimation is often challenged by the 

consistency and the reliability of the results. Part of the reason is inherent in the nonlinearity of the 

problem. To improve the estimation, additional information about the wavelet can be used, such as 

reliable knowledge of its amplitude spectrum. This simplifies the problem to finding a phase-only 

wavelet that one can further constrain by its time support. The interest in bispectrum analysis and their 

use for wavelet estimation without phase unwrapping is revived in this abstract. The method is 

developed using third order statistics but extension to fourth order statistics is straightforward. 
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Figure 1. Flowchart for the phase 

estimation algorithm. 

 

 
Figure 2. Flowchart for the phase conditioning algorithm 

(a), geometrical illustration of the algorithm (b)  

 

https://www.earthdoc.org/search?value1=F.+Zhang&option1=author&noRedirect=true
https://www.earthdoc.org/search?value1=Y.+Wang&option1=author&noRedirect=true
https://www.earthdoc.org/search?value1=X.+Li&option1=author&noRedirect=true
https://www.earthdoc.org/content/proceedings/Amsterdam2009


 

 

82nd EAGE Conference & Exhibition 2020 

8-11 June 2020, Amsterdam, The Netherlands 

 

  

 

 
Figure 3. synthetic reflectivity (a), 

corresponding synthetic data (b)  

 

 
Figure 4. Comparison between the true and the estimated 

wavelets (a) wavelets in time, (b) amplitude spectra and (c) 

phase spectra  

 
Figure 5. Window from a PSTM subline section (a) after the application of phase compensation (b)  

 
Figure 6. Comparison between the true and the estimated wavelets (a) wavelets in time, (b) amplitude 

spectra and (c) phase spectra 


