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Summary 
 
Least-Squares migration (LSM) produces high-resolution images ready for reservoir characterization. It corrects 
the image amplitudes from the migration operator limitations and the uneven illumination created by a complex 
model. When posed as a reflectivity inversion in the angle domain, LSM compensates the angle gathers amplitudes. 
Our LSM algorithm explicitly computes a Hessian matrix or point spread functions (PSF) with an extra angle 
dimension. It applies a chain of operators and their adjoints for modeling, migration, and angle generation to a grid 
of point scatterers distributed through the model. The angular reflectivity is recovered by solving a linear system of 
equations that deconvolves the multidimensional PSF from the migrated image gathers. The implementation is 
efficient and effectively incorporates the spatial variability of the PSF. Results from Sigsbee2A model and a 
multisensor streamer survey from the Central North Sea show how our procedure improves the image resolution 
and the AVA reliability. 
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Introduction 
 
Seismic image amplitudes are biased by the earth model, acquisition parameters, and imaging 
operators. The bias is particularly prominent in the presence of complex earth models, as it can affect 
the interpretation of amplitudes and their variability with angle. Provided with a good velocity model, 
migration generates flat angle gathers with smooth variations in reflectivity. Abrupt changes in 
amplitude with angle are typically indicative of illumination problems. 
 
Seismic imaging operators (i.e. modeling/migration) are non-unitary (Claerbout, 1992), meaning that 
if L is a modeling operator, and L′ is its adjoint (migration), their product H=L'L is not the identity 
matrix; H is a Hessian matrix, whose elements are the point spread functions (PSF). As a result, depth 
migrated images are blurred, and AVA is often not preserved. This can change depending on the 
migration operators as wave equation one-way (WEM), two-way (RTM) or asymptotic (Kirchhoff) 
handle the amplitudes differently and have different degrees of kinematic accuracy (Gray et al., 2001, 
Zhang et al., 2005). Asymptotic Kirchhoff operators are closer to be unitary (Bleistein, 1987) and are 
usually trusted for AVA interpretation in spite of their kinematic limitations in high-contrast rapidly 
varying earth models. As our ability to estimate more detailed earth models increases by the usage of 
Full Waveform Inversion (FWI) it is desirable to utilise more accurate wave equation operators that 
could adequately preserve image amplitudes. 
 
Here, we discuss a least squares migration (LSM) solution that balances the depth migrated images to 
account for uneven illumination, reduces the image blurring, and corrects the angle gather amplitudes. 
The algorithm assumes that the background earth model is accurate and poses the estimation of the 
reflectivity as a least-squares inversion problem in the reflection angle domain. It explicitly computes 
the Hessian matrix with an angle dimension by applying a chain of operators (modeling/migration and 
offset to angle transforms) to a grid of point scatterers distributed throughout the model space. The 
method assumes a degree of stationarity of the PSF as they are later interpolated to fully populate the 
image space. As a final step, it solves a linear system where the migrated images and the PSFs are the 
known quantities, and the angular reflectivity is unknown.  Results from the Sigsbee2A model and a 
multisensor field survey from the central North Sea demonstrate the advantages of the method. 
  
Least-Squares Migration with gathers  
 
The Least-squares migration algorithm can be summarized as follows: given a linear modeling 
operator L and a reflectivity model m, compute synthetic data d using the relation d = Lm, form a 
quadratic cost function 

 
and seek a reflectivity model that minimizes it.  
 
A closed form solution for the least-squares estimate of m is given by:  

 

where the migration operator L′ is the adjoint of the modeling operator L, mmig is the migrated image, 
and H is the Hessian matrix whose elements are the point spread functions (PSF). Equation 3 implies 
that the reflectivity can be estimated by a matrix-vector multiplication of the inverse of the Hessian 
(H-1) times the migrated image (mmig). However, it is not numerically feasible to compute the inverse 
Hessian matrix for most field data applications. Alternately, a low-rank approximation to the inverse 
of the Hessian has been proposed in the literature (e.g. Guitton, 2004).  
 
A better approach is to explicitly compute the Hessian matrix and estimate the reflectivity 
(Valenciano, 2008) rather than approximating the matrix inverse.  This alternative solution is obtained 
by solving the linear system: 
 

S(m) =  d−dobs  =  Lm−dobs ,  (1)

m̂ = !LL( )−1 !L dobs (2)

m̂ =H-1mmig, (3)
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using an iterative inversion algorithm (e.g. conjugate gradients). To generalize equation 4, and invert 
for angular reflectivity, we need to define the Hessian in the prestack image space. 

Expanding Hessian dimensionality to the angle domain 

Valenciano and Biondi (2006) defined the Hessian matrix in the prestack image domain as a chain of 
operators from the subsurface offset h = (hx,hy) to the reflection and azimuth angle Θ = (θ,α): 
 

 
 

where the operator T defines the transformation from reflection and azimuth angle to subsurface offset 
(Sava and Fomel, 2003). The Valenciano and Biondi (2006) approach can be applied to any prestack 
volume where angle gathers may be produced from  direct binning using Poynting Vectors (Yoon and 
Marfurt, 2006) or using extended imaging conditions (Sava and Fomel, 2005). After computing the 
angle domain Hessian, the linear system from equation 4 can be expanded to estimate the least-
squares angular reflectivity (Valenciano 2008): 
 

 

Computing the angle domain Hessian matrix 

Here, we compute the Hessian matrix in the angle domain by applying the chain of operators from 
equation 5 to a grid of point scatterers distributed throughout the model space. The spacing of the 
point scatters is controlled by several factors including acquisition geometry, medium velocity, and 
imaging frequency. Here we assume local stationarity of the PSF as they are later interpolated to have 
a contribution at each image point. 
 
The Sigsbee model 
 
The Sigsbee2A model (Figure 1a) is ideal for illustrating the variable illumination on the angle 
gathers. We generated synthetic data with constant amplitude angle gathers (i.e. no AVA). As 
expected, however, the migration (WEM) angle gathers (Figure 1b) show uneven illumination—
noticeably under the salt. In contrast, the LSM angle gathers (Figure 1c) show the expected AVA in 
the sediments, and lesser variability than migration below the salt. Figure 1d shows a comparison of 
the amplitudes extracted in the red and green circles from figures 1b and 1c. The LSM produces 
constant amplitude for all angles, as expected. 
 
Field data from the North Sea 
 
A 3D narrow-azimuth multisensor streamer dataset from the Central North Sea (Viking Graben) 
further illustrates the advantages of LSM. Here, the presence of a complex overburden (high-velocity 
bodies: “V bright”) produces uneven illumination at the reservoir level. Figure 2 shows a comparison 
of the results from migration (WEM) and LSM. The LSM improves resolution (Figure 2) and enables 
discrimination of the reservoir from the background. Figures 2e and 2f show angle gathers at the target 
and their corresponding AVA. The illumination compensation with LSM changes the AVA trend as 
well as the interpretation at the reservoir (Figure 2g).  The LSM AVA trend matches the response 
predicted by AVA modeling from a nearby well. 
 
Conclusions 
 
We presented a wave equation LSM solution that produces reliable AVA in complex media. Synthetic 
and field data examples show improvement after LSM in image resolution and AVA consistency. We 

Hm̂ =mmig, (4)

H x,Θ, "x , "Θ( ) = "T Θ,h( )H x,h, "x , "h( )T "Θ , "h( ), (5)

H x,Θ, "x , "Θ( )m̂ x,Θ( ) =mmig x,Θ( ). (6)
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showed on the field data from the Central North Sea (Viking Graben) that the LSM illumination 
compensation can change the AVA interpretation at the reservoir level. We conclude that LSM can be 
a robust solution for producing volumes of angular reflectivity ready for reservoir characterization. 
 

 
Figure 1 Sigsbee2A: (a) velocity model, (b) Migration (WEM) angle gathers, (c) LSM angle gathers, 
and (d) AVA comparison at the reflector in the center of the circle. The LSM compensates for uneven 
illumination underneath the salt body. 
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Figure 2 Central North Sea data: (a) Migration (WEM) depth slice, (b) LSM depth slice, (c) 
Migration inline section, (d) LSM inline section, (e) Migration angle gathers, (f) LSM angle gathers, 
and (g) AVA comparison at the reservoir depth. The rectangles in color in panels (c) and (d) show the 
RMS amplitude values inside the red ellipses. Note that the near vs far angle stacks can better 
discriminate the reservoir from the background in the LSM image. 


