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Summary 
 
Before data from the multisensor streamers records are combined, it is essential to attenuate the noise 

from both records to ensure the creation of high-quality up- and down-going wavefields. In recent years, 

our industry has moved from using statistical and mathematical tools towards machine learning tools to 

attenuate noise in seismic data. The key motivation has been automation, consistency of output, and 

quality improvements. We present separate workflows for both pressure and particle motion records 

that use deep learning to directly attenuate the noise from the records. The heart of the workflows is a 

convolutional neural network called real image denoising network (RIDNet). The current workflows 

use a single RIDNet model with exact structure for both pressure and particle motion records to attenuate 

incoherent noise in the bandwidth where most of the noise exists. Both models were trained using data 

recorded in the field with supervised learning where the desired outputs were produced by previously 

developed machine learning based workflows.  The new workflows have been extensively validated 

using records from surveys acquired with different survey geometry, water depth and sea conditions. 

The validation process confirms that there is no need for workflow modification or re-training of the 

models. Therefore, the workflows are automated and do not require user interaction. 
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Introduction 

Multisensor streamers record both pressure and particle motion. The down-going wavefield has 

opposite polarity on pressure and particle motion records whereas the up-going wavefield has the same 

polarity. This feature means that recordings from these two different sensors can be combined to 

separate the wavefield into up- and down-going parts. Before the data from the two sensors are 

combined, it is essential to attenuate the noise from both records to ensure the creation of high-quality 

up- and down-going wavefields. In recent years, our industry has moved from using statistical and 

mathematical tools towards machine learning tools to attenuate noise in seismic data. The key 

motivation has been automation, consistency of output, and quality improvements. Machine learning 

applications in seismic noise attenuation can be categorized into three main groups: quality control of 

the noise content and signal loss (e.g., Bekara and Day, 2019); detection of noise and signal loss for 

automatic guiding of the noise attenuation engine (e.g., Farmani and Pedersen, 2022); and finally, direct 

noise attenuation (e.g., Kumar et al., 2022; Valenciano et al., 2022). 

Following the work of Farmani et al. (2023), we have developed separate workflows for both pressure 

and particle motion records that use deep learning to directly attenuate the noise from the records. The 

heart of the workflows is a convolutional neural network called real image denoising network (RIDNet). 

RIDNet was originally designed to denoise photographic images (Anwar and Barnes, 2019). Compared 

to the previous machine learning based workflows we have presented; the current workflows use only 

a single RIDNet model with exact structure for both pressure and particle motion records to attenuate 

incoherent noise in the bandwidth where most of the noise exists. Therefore, the main parts of the 

workflows are significantly simplified and are very similar for both types of the records. Other types of 

noise and incoherent noise outside the RIDNet application bandwidth are attenuated by the other 

processes in the workflows. 

Methodology 

Incoherent noise attenuation on both pressure and particle motion records in the bandwidth of interest 

is performed using a network based on RIDNet architecture. Figure 1 shows the RIDNet network 

architecture. RIDNet is a modular network comprising three main modules: feature extraction, feature 

learning residual module, and reconstruction. In the first part of the network, features are extracted using 

a 2D convolutional layer. These features are then passed to a sequence of modules called enhancement 

attention modules (EAM). EAM branches the input features and passes them through two dilated 2D 

convolutions. Features are further passed through some 2D convolutions and local skip connections. By 

using dilation and local skip connections, the network can learn both low and high frequency features 

in the input data. The output of the last EAM is passed to a 2D convolutional layer to reconstruct the 

noise with opposite polarity. Finally, the reconstructed noise is added back to the input and the final 

output is generated. We used supervised learning to train the models. To create a generic and global 

model that can perform well on any unseen data without re-training, it is important to include a variety 

of signal and noise in the training dataset. We also found it beneficial to train the models with consistent 

noise attenuation performance regardless of the noise level in the input data. If training datasets are 

prepared by any human interactions, there will be inconsistency and bias in the level of the noise 

attenuated based on the judgment of the geophysicists. In the absence of any alternative solutions, it is 

of course possible to use such data for the training. However, how generic the performance of the trained 

models will be, depends on the consistency of the model outputs used in training. 

To train the RIDNet model for noise attenuation of particle motion data, we used noise attenuated data 

from the workflow previously proposed by Farmani et al. (2023). In their proposed workflow, two 

RIDNet models are used to attenuate the noise and an addback flow in the curvelet domain is used to 

recover local signal loss if necessary. After extensive validation of their workflow and its application 

in production processing, a large body of noise attenuated data with consistent noise attenuation was 

available. We selected a subset of data including 1.6 million tiles from the available data and trained a 
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single RIDNet model. Our training could reach peak signal-to-noise ratio (PSNR) of 37.04 on validation 

data. The new model performed as well as the previous workflow on the available data and performed 

equally well on new data. Our particle motion RIDNet model targets particle motion noise in frequency 

band 19-95 Hz. FX filters are used to attenuate the noise at frequencies outside that frequency range. 

Linear coherent noise is supressed using FK filters in the workflow. 

Figure 1 Schematic of the RIDNet convolutional neural network architecture. 

To train a RIDNet model for noise attenuation of pressure data, we used noise attenuated data from the 

workflow proposed by Farmani and Pedersen (2022). Their workflow consists of three main elements: 

sample based deep learning classification using U-Net networks, FX deconvolution filters and FX 

projection filters. This workflow also runs in an automated fashion without user interaction, and it 

produces consistent noise attenuated outputs. As this workflow has been used in production for some 

time, a large body of noise attenuated pressure data was available to train the RIDNet model. We 

selected 660,000 tiles for training such that they cover a large variation of geology, water depth, input 

noise level and acquisition geometry. Our training could reach PSNR of 47.1 on validation data. Our 

pressure RIDNet model targets noise in pressure data below 25 Hz as most of the noise is at the lowest 

frequencies. Noise above 25 Hz, if present, is targeted using FX filters. Linear coherent noise is 

supressed by FK filters in the workflow. 

Example 

The data selected for this example were acquired using a dual-sensor streamer offshore Newfoundland, 

Canada. The water depth is approximately 1500-3200 m in the survey area. The data were acquired 

during summer 2022. Figures 2 shows shot gather examples for pressure records before and after the 

noise attenuation and attenuated noise. Figure 3 shows a part of 2D QC (Quality Control) stack from 

the same survey. The workflow attenuates the pressure record noise very effectively. Figures 4 and 5 

show similar data recorded by particle motion sensors. Note how the nature of the noise is different 

between pressure and particle motion records. In this example, the noise recorded by the pressure 

sensors is mainly due to the environmental conditions and the noise recorded by the particle motion 

sensors is mainly due to the vibration noise caused by external devices attached to the streamer. Particle 

motion noise is rather strong on this example but is heavily supressed by the workflow. However, some 

residual noise can be observed particularly on near offsets. This level of residual noise does not affect 

the quality of the up-going pressure field and will be further supressed in the subsequent processing 

steps. The final product of multisensor acquisition is usually the up-going pressure field. Figure 6 shows 

the same shot gathers and 2D QC stack as in Figures 2 to 5 after generating the up-going wavefield. 

Note the low level of noise in the up-going wavefield. 
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Figure 2 Shot gather examples of hydrophone records a) before and b) after the noise attenuation. c) 

noise attenuated by the workflow. 

Figure 3 2D QC stack of pressure records a) before and b) after the noise attenuation. c) noise 

attenuated by the workflow. 

Figure 4 Shot gather examples of particle motion records a) before and b) after the noise attenuation. 

c) noise attenuated by the workflow. A 20-30 Hz Ormsby lowcut filter was applied for display purposes.

Figure 5 2D QC stack of particle motion records a) before and b) after the noise attenuation. c) noise 

attenuated by the workflow. A 20-30 Hz Ormsby lowcut filter was applied to the input to the stacks. 
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Figure 6 Shot gather examples (a) and 2D QC stack (b) of the up-going pressure field generated from 

the noise attenuated pressure and particle motion records. 

Conclusions 

Multisensor noise attenuation workflows have been designed to simplify and further improve the noise 

attenuation on both pressure and particle motion sensors. The network is based on convolutional layers 

using the RIDNet architecture. Both models were trained using data recorded in the field with 

supervised learning where the desired outputs were produced by previously developed machine learning 

based workflows. The new workflows have been extensively validated using records from surveys 

acquired with different survey geometry, water depth and sea conditions. The validation process 

confirms that there is no need for workflow modification or re-training of the models. Therefore, the 

workflows are automated and do not require user interaction. In common with previous machine 

learning based workflows that we have presented, the parameter testing phase necessary for the 

conventional noise attenuation approaches is eliminated. Depending on the hardware resource, the 

computational expense of the RIDNet-based workflows is less or comparable to machine learning based 

approaches that we have previously presented. Both workflows are available for the use in production. 
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