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Summary 

The curvelet transform is a known tool used in the attenuation of coherent and incoherent noise in seismic data. 

It utilises the fact that signal and noise are usually better separated in the curvelet domain than in the time-

space (TX) domain. Coefficients of the transform are not independent and neighbouring coefficients are strongly 

correlated, which existing curvelet-based noise attenuation algorithms do not fully utilise. In this work we 

propose to use a data structure called a ‘dip map’ to describe dip information in seismic data. This information 

links local curvelet coefficients together in adaptive thresholding or subtraction of curvelet coefficients in seismic 

denoising algorithms. We used the dip map to improve curvelet multiple subtraction algorithm and the results 

show significant improvement over traditional methods with real data. 



Introduction 

All acquired seismic data are contaminated by noises that need to be removed or attenuated before 
further processing and interpretation can take place. The methods for seismic data denoising can be 
broadly classified into prediction filter methods and transform-based methods. In this paper we 
continue previous works on seismic data denoising using curvelet transform by using a technique that 
connects transform domain curvelet coefficients to seismic events in the original time-space (TX) 
domain. 
Curvelet transform has been used successfully in seismic denoising of both incoherent and coherent 
noise (Neelamani et al., 2008) mainly because of useful properties that can be leveraged: 1. Curvelets 
provide a sparse representation of seismic events, 2. events of differing dip, scale or TX location will 
often be well separated in the curvelet domain. The curvelet transform represents any 2D image as a 
linear sum of curvelet dictionary functions weighted by corresponding coefficient values. The data is 
decomposed into multiple scales, with each scale divided equally into multiple directions. Curvelet 
basis functions are designed to be simultaneously localized in scale, direction, space and time. Each 
curvelet coefficient is thus identified by a multi-index consisting of scale, direction and space-time 
indices. Each scale-direction (curvelet subband) is strictly band-limited, hence each curvelet subband 
is decimated to a much smaller size when compared to the original data (Nguyen et al., 2010).  
An example of the amplitude of complex curvelet domain coefficients is illustrated in Figure 1 (left). 
Each coefficient C(i,j,t,x) has scale index i, direction index j, and time-space indices t,x. Figure 1 
(right) also illustrates  the relationship between neighboring coefficients: coefficients with the same 
(j,t,x) describe the same event, but at different frequencies (or scale), group of coefficients at the same 
curvelet subband (i,j) describe linear seismic events, and coefficients with the same (i,t,x) describe 
events whose directions fall between multiple curvelet bands. The coefficients having close scale-
direction-location indices in the curvelet domain are strongly correlated, because they describe 
approximately the same seismic events. Therefore our aim is to have a data structure to link 
neighboring curvelet coefficients in noise attenuation algorithms based on geometrical characteristics 
of seismic events in TX domain. 

Figure 1 Left: an example of complex curvelet representation of a typical seismic shot gather with 
primary and multiple noise, and, Right: an example of the relationship of a coefficient with its 
neighbouring coefficients. 

Curvelet transform and the dip map data structure 

The dip map is a data structure created for the purpose of connecting seismic events in TX domain to 
coefficients in transform domain. For a normal 2D TX seismic section the dip map is a 3D data cube 
D(t,x,d) of time, space and dip dimensions calculated from the data. For each location of the TX data 
the dip map provides a dip spectrum vector that corresponds to seismic events at that location. 
Because the objective of the dip map is to provide dip information for the curvelet transform, and the 
number of curvelet band for each scale is increasing with scale level, the number of dips in the dip 
map is set equal to the number of curvelet direction at the highest scale.  
Seismic data contain continuous and locally linear events; there are continuities between dip map 
sections corresponding to different times that are close to each other. This is illustrated in Figure 2. 
The two synthetic events have nearly the same dip at three different times. The dip map sections of 
time t0 and t2 show two separate seismic events in its directions and location, but it is difficult to 
separate the two events in the dip map section at time t1 because the two events have the same x 



location. At time t1 the dip map sections from time t0 and t2 can help in separating these two crossing 
events. In practical seismic processing applications using curvelet transform and dip maps, any 
algorithm will need to estimate dip maps for the signal component and/or dip map for the  noise 
component in case of coherent noise.  

Figure 2 Examples of dip map calculated from a TX section, and three slices in time of the dip map 
cube correspond to three time location t0, t1 and t2. 

Application of dip maps to multiple subtraction 
We now describe how the dip map was used for our curvelet-domain adaptive multiple subtraction 
where the amount of rotation and scaling are controlled by an analysis step (Nguyen et al., 2016). A 
typical approach for adaptive multiple subtraction in the curvelet domain is to rotate and scale each 
curvelet domain coefficient of the model to match the data coefficient at the same index (Neelamani 
et al., 2010). The problem of this approach is that it relies on the assumption that primaries and 
multiples are mapping to different coefficients in the curvelet domain. While it is true that primaries 
and multiples are better separated in the curvelet domain than in the TX domain, crossing primaries 
and multiples can be mapped to the same curvelet coefficients. When the multiple model coefficients 
are rotated and scaled to match the data coefficients, they are not only adapted to the true multiple but 
also to the primary component, potentially leading to primary damage.  
Our algorithm for multiple subtraction (Nguyen et al., 2016) in the curvelet domain consists of an 
analysis and subtraction phases. The analysis phase takes into account a group of nearby curvelet 
coefficients estimating the constraint parameters for each pair of curvelet coefficients. These 
parameters control the amount of adaptation that the curvelet coefficients of the model are allowed to 
adapt to the data coefficient in the subtraction phase. By considering a group of coefficients together, 
the analysis phase can match modelled multiples to real multiple events in the TX domain, estimating 
the suitable adaptation parameter for the corresponding curvelet domain coefficients. Calculating the 
parameters in the analysis phase requires an estimation of the dip map of the multiple and primary 
components of the data, step by step as follows: 

1. The multiple model is matched to real multiple by LSF (Least Square Filtering).
2. The multiple dip map is estimated from the adapted model (DM).
3. The multiple is subtracted from the data by curvelet matching with a high level of adaptation.
4. Primary dip map (DP) is estimated from an over-adapted subtraction with primary damages.
5. A new primary dip map (DP) is interpolated using the multiple dip map DM as a weighting

mask to compensate for multiple masking of primary events.
In step 3, the multiple is subtracted with high adaptation parameters to ensure all multiples are 
subtracted and the result contains only primary. The crucial part of the analysis phase is to estimate a 
primary dip map from an over-adapted subtraction with primary damages in step 4. This is done by 
using the property that dip map events are continuous and linear and using the dip map of the multiple 



as a weighting mechanism to compensate for primary events that are masked by multiples. An 
example of a processing algorithm for primary map reconstruction in step 5 is shown as follows: 

I. Estimate a normalized mask from the multiple dip map DM(t,x,d) ranging from 0 to 1. For

example ���, �, �� = 	���,�,��

��	���,�,��

II. For each point (t,x,d) of the dip map of the primary DP(t,x,d), estimate a new value taking into
account the neighbouring value:
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where W���, ��, �� is an anisotropic smoothing window with its main axis in the direction of
the current dip d, its value is estimated from � −����, ��, �� and is normalized so that it sums
up to 1. The main idea is that when the value of the multiple mask is high, the value of the
primary dip map is compensated by taking into account its value further along the direction of
the dip.

After the above processing the analysis phase will have estimated dip maps for the primary and 
multiple components and these can be used to control adaptation level in the subtraction phase. Using 
the location (t,x) and direction (j) indices of each curvelet coefficient, the dip maps can provide an 
estimation of the primary and multiple components. The ratio between multiple and primary dip 
information will control the level of scaling and rotation of the modelled coefficient to match the data 
before being subtracted. If the amplitude of the multiple dip map is stronger than the primary dip map, 
the level of adaptation is higher; conversely, if the primary dip map is stronger, the level of adaptation 
can be reduced. By this way, the primary events are better preserved while high level of curvelet 
adaptation will remove more residual multiple in weak primary areas.  

Examples 
The authors have implemented and tested successfully the above algorithm on a synthetic dataset and 
a real deep water dataset. We present here the result of a test performed on a very challenging shallow 
water broadband data from the Barents Sea acquired using dual-sensor towed streamer technology. 
Figure 3 is the stack of the result of conventional model based denoising from which we can see that 
most of the multiples are attenuated although there is still some visible residual multiple noise left in 
the region where primaries overlap with complex structure/faults. This residual multiple noise is 
further attenuated using our new curvelet denoising method (Figures 4,5 and 6).  
Because curvelet adaptive subtraction relies on the directionality of the transform and curvelets have a 
higher number of curvelet directions at higher scales, our method tends to work best at frequencies 
above 20Hz. We found that at lower frequencies, the improved method for LSF subtraction produces 
better results. Both multiple subtraction techniques have been integrated into an intelligent adaptive 
subtraction program (Perrier et al., 2017) that combines different multiple subtraction techniques to 
produce the optimum demultiple.      

Conclusions 
The advantage for seismic noise attenuation in the curvelet domain is that noise and signal are better 
separated in the transform domain. However they are not totally separated and denoising algorithms 
need to take into account nearby coefficients in thresholding or subtraction step. We propose using the 
dip map data structure to connect local curvelet coefficients together in the noise attenuation process. 
In the specific case of multiple subtraction, matching and subtraction of curvelet coefficient 
independently can lead to primary damage. We avoid this problem by using estimated dip maps for 
the primary and multiple components to guide the adaptation process. Our example on real dataset 
shows that the improved multiple subtraction algorithm removes more residual multiples while 
preserving primaries. 
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Figure 3: Stack of the multiple denoising 
results in channel domain using conventional 
simultaneously Least-Squares Filtering 
based adaptive subtraction. 

Figure 4: Stack of the multiple attenuation result 
after applying this newly improved method in 
channel domain with a running window of 1000 
traces in the space direction. 

Figure 5: Stack result difference (scaled by 2) 
This demonstrates clearly that primaries are 
well preserved while more multiples are 
attenuated.  

Figure 6: Stack result difference in the boxed 
area in Figure 5 (scaled by 10). 


