
                                                                                                                                
                                                                                                                      

75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013 
London, UK, 10-13 June 2013 

 

Taper Design for Block Processing of Seismic
Data
M. Bekara* (PGS - Petroleum Geo-Services)

SUMMARY
In many seismic processing applications, such as filtering and interpolation, the input data is partitioned
into small overlapping blocks that are processed separately and then merged to construct the final output
data. Tapering the different blocks before merging is done to account for the overlap and to avoid visible
artefacts related to the imprint of the blocking. While tapering is important, the design of blocking tapers is
often done in a simplistic way. This paper proposes a method to design any N-dimension blocking taper
with any amount of overlap. The proposed taper has the property that its aggregate sum across the data
section is one, thus fold computation and normalization is avoided. In addition, the taper has some useful
spectral features so it can also be used as a pre-Fourier transformation taper when the processing involves
such transformation.
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 Introduction 

Many seismic applications such as filtering and interpolation involve processing the seismic section in 
portions, called blocks, rather than processing the entire section at once.  For example, the de-noise 
procedure f-x deconvolution (Canales, 1984), works over blocks of data defined by a rectangular 
time-space window that slides with an overlap in both directions to cover the entire data section.  
 
The main reason for block processing is to fulfil the theoretical modelling assumption behind the 
processing algorithm. For example, in the case of f-x deconvolution, the seismic event contrary to 
random noise is supposed to be spatially predictable. This implies that the seismic event is linear with 
respect to the x variable. However, this assumption is not valid for real data (e.g. reflection events 
with respect to offset), and can only be approximated locally, i.e., if a small block of data is 
considered instead.  
 
In all block processing applications, the blocks are extracted with an overlap to achieve a seamless 
result. The final processing outcome is obtained by merging the result of all processed blocks. To 
account for the overlap, tapers are applied before merging the different blocks. Tapering is important 
to avoid visible artefacts related to the imprint of the block size. Linear tapers with an overlap of up to 
50% are the default choice of block tapers because of their simplicity and their aggregate sum to 
unity.  
 
When the processing involves passing the input data through Fourier transforms, the block taper often 
serves as pre-transformation taper for convenience. Because if a conventional pre-transformation 
taper such as Hamming or Cosine is used, then one need to make sure to normalize the final output 
section by the fold, i.e. the aggregate sum of the pre-transformation taper’s weights throughout the 
section (which does not equal to one). This requires computing and buffering the fold and may 
introduce artefacts due to fold variation. Removing the effect of the pre-transformation taper after the 
block processing is not done in practice as dividing the output of the block processing by the taper’s 
values is not desirable. Tapers have small values at the edges and the division can cause visible 
numerical artefacts. Therefore, the idea of using the block taper as a pre-transformation taper is 
attractive. The design of the block taper should hence be done with some care to account also for its 
spectral properties.  Dimensionality of the taper is not considered in its design. High dimensional 
tapers are often constructed by simply multiplying a set of one dimensional tapers.  This, as it will be 
shown in an example, may lead to poor shaping of the spectrum of the resulting high-dimensional 
taper. 
 
The paper proposes a method to design one or multi-dimensional taper with any user’s specified 
amount of overlap. The taper is designed such that (i) its aggregate sum throughout the section is 
equal to one, hence avoiding fold computation and normalisation, (ii) it satisfies a given smoothness 
condition that gives it some desirable spectral properties. 

Method  

The method for designing one dimensional taper is considered first and then generalized to higher 
dimensional tapers. 
 
Design of 1-d taper 
Let � �TNxxx �21 �x be a vector that contains the samples of the 1-d taper of length N . The taper 
moves with M samples which results in an overlap of MNL ��  samples. It is assumed for ease 
of derivation that the taper moves along an infinite axis. The aggregate sum of the taper’s weights as it 
moves along the axis is given by: 

                                       NkMnxy kMnn �����
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 One can easily see that ny is a periodic sequence with period equal to M . The main idea here is to try 

to find the taper’s samples � �Nxxx �21  such that ny is equal to 1 for one period. This can be 
formulated as: 
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In practice the taper is moved along a finite length axis. The periodicity, in this case, holds except for 
the roll-on and roll-off parts which correspond to the edges of the axis.  Extending the length of the 
finite axis by data mirroring at the edges is often done to avoid edges-related artifacts. The above sets 
of equations are symbolically expressed in a matrix form as: 
                                                                     bHx � ,                                                             (3) 

where 
 ��� 2121 e,e,e,e,eH M�  is M-by-N matrix with � �Tk ��1,0, , 0�e is a vector of M “0” 

element except a “1” at location k and � �T1 ,1, 1 ��b . 
For example, if )2,5(),( �MN equation (2) becomes: 
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The linear system in (2) is underdetermined because the number of unknown N  (number of samples 
in the taper) is always larger than the number of equation M (number of samples by which the taper 
moves). This means that the taper that satisfies equation (2) is not unique. To illustrate this point, all 
the following tapers are valid solutions to eq. (4) 
(0.25, 0.50, 0.50, 0.50, 0.25), (0.10, 0.40, 0.70, 0.60, 0.20), (0.20, 0.60, 0.70, 0.40, 0.10),  
The non-uniqueness of the solution is rather a desired property as it gives the designer the flexibility 
to put additional constraints to shape the taper in order to fit any specific application.  In this paper, 
the emphasis is on enforcing some form of “smoothness” on the taper. The criterion chosen here is to 
select the taper whose second order difference sequence (i.e. discrete equivalence to the second order 
derivative) has the minimal energy. This translates to the minimization of a quadratic cost function 
with the linear constraint in equation (2), i.e.   

                                                         bHxQx �    given that   minimize 2

2                              (5) 
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and  . 2

2 is the  2-L norm.  

The solution of this quadratic optimization problem in equation (5) is obtained using the Lagrange 
multipliers (Nocedal et al. 2006, Chapter 16) and it is equal to: 

                                                    � � � �� � bHQQHHQQx  ˆ
-111 TTTT ��

�                                          (7)  
The taper obtained in equation (7) is named the Block-taper or simply B-taper. This taper is 
guaranteed to be symmetric and therefore has a linear phase. This property is important when the 
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 taper is used as pre-Fourier transformation taper to avoid any phase distortion. The proof of this 
property stems from the following three facts.  

1. One can observe that if � �TNxxx �21 �x  is a solution to equation (2), then its reverse 

� �TNN xxx 11 ~ ���x  is also a solution to the same equation due to the symmetry in the 
construction of the periodicity (i.e., the axis could be reversed and periodicity still holds).  

2. The second order difference of x  is a reversed sequence of the second order difference of x~  
due to the symmetry of the 3-point operator used in computing second order difference as 
defined byQx . Moreover, the L-2 norm of a sequence and its reverse are equal, hence 

2

2

2

2
~xQQx �  . 

3. Since the solution x̂  defined in equation (7) and its reverse x
~̂

 have the same cost value and 
both satisfy the same constraint of the optimization problem in equation (5) and since the 
solution is unique, then xx

~̂
   ˆ �  and this proves the symmetry of the taper. 

  
Extension to higher dimension taper 
 
Extension to design higher-dimensional tapers follows the same steps as for 1-d case. One can show 
that for a D -dimensional taper that moves respectively with � �DMMM �21  samples in each dimension, 
the aggregate sum of the taper’s weights is periodic in the i -dimension with a period equal to iM . A 
linear system similar to the one in equation (3) can be formulated. The cost function can be 
constructed as a weighted sum of L2-norms of the second order difference of the taper in each 
dimension. The weights can account for possible variation of the sampling units in each dimension, 
but also for possible overlap variation. The sum of weighted L-2 norms has a quadratic form and the 
design problem simplifies to solving a quadratic optimization with equality constraints similar to one 
in equation (5). 

Examples 

In the first example, a comparison between a linear-taper and a B-taper is presented. The focus will be 
on the spectral properties of each taper, particularly the energy level of the side lobes. This is 
important for Fourier-based data filtering and interpolation processes that aim to extract large 
amplitudes from the spectrum of the input block data. Having large side lobes potentially may mask 
some of the weak events. Figure (1-a) shows a liner-taper of length 100 samples and an overlap of 50 
samples. Figure (1-b) shows the designed B-taper with the same length and overlap. One can see that 
both tapers have roughly equal main lob width (Figure 1-c), but the B-taper has lower amplitudes for 
the side lobes compared to the linear-taper. The B-taper looks very similar to a cosine-taper, however 
contrary to a cosine-taper it sums to unity when it is moved and merged over the processing window.  
 
A designed two dimensional B-taper with 50% overlap in both dimensions is shown in Figure (2-b). It 
is compared with a two dimensional linear taper (Figure (2-a)) obtained by multiplying two1-d linear 
tapers. Their wavenumber spectra are shown in Figure (2-c-d). As for the case of 1-d, the B-taper has 
weaker side lobes compared to the linear taper. Also because the design is done truly in 2-d, the shape 
of its main lobe (Figure (2-d)) is radial, offering a better directional spectral properties. The pseudo 2-
d linear taper (Figure (2-c)), has a rectangular shape for its main lobe.   
 
Conclusions 
 
Taper design for block processing is often considered as an auxiliary issue. The dimensionality and 
the spectral properties of the taper should be considered, particularly if there is a need to use it as pre-
Fourier transformation taper. The proposed B-taper offers a good choice for both block merging and 
pre-transformation taper as it is designed to have relatively weaker side lobes compared to a linear 
taper and a directional spectral property for high dimensions. 
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Figure 1 Comparison of one dimensional linear-taper (a) and a proposed B-taper (b) with length = 100 

samples and overlap of 50 samples. Frequency spectra of each taper are shown on the right(c) 

 

Figure 2 Comparison of two dimensional linear-taper (a) and a proposed B-taper (b) with size 100 x 40  
samples  and an overlap of 50% in each direction. Spectra of linear-taper (c) and B-taper (d) 
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