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Summary 

 

Our objective is a novel application of unsupervised machine 

learning (UML) to semblance-based velocity picking.  

Earlier methods have used UML to identify semblance 

maxima within a single panel.  The proposed method creates 

groups of related semblance peaks from different CDP 

locations, so that users can work interactively with whole 

groups that span the entire survey, rather than with 

individual picks.  This allows the user to stay in control of 

the outcome, while delegating much of the tedious labor to 

the UML algorithm. 

 

Introduction 

 

Velocity picking is an obvious candidate for machine 

learning application in seismic processing.  As a manual 

procedure it can be tedious and repetitive.  Automatic 

pickers have been employed with varying degrees of 

success; they can identify many reasonable picks but may 

require QC and editing because of the difficulty for a black-

box algorithm to capture the insight of an experienced 

processor looking at real data.  Machine learning methods 

may fare better than non-learning automatic pickers because 

complete knowledge of the problem is not required to be 

programmed into the software; rather, it can be acquired as 

needed during application. 

 

In the case of supervised learning methods, additional 

knowledge of the problem is added in the training stage, 

which requires extensive labeled data, thus not fully solving 

the problem of a human processor’s involvement in tedious 

and repetitive work for a new project.  This approach will 

not be discussed further in this abstract.  Instead, we explore 

a novel application of unsupervised machine learning 

(UML) to velocity picking.  Previous work along these lines 

has used UML to detect picks within a single semblance 

panel (Smith, 2017; Chen, 2018; Wei et al., 2018; bin 

Waheed et al., 2019).  In these methods, points with a 

semblance value above some threshold group themselves 

into clusters, with each cluster typically centered about a 

semblance peak.  Each cluster therefore yields an automatic 

pick.  The additional knowledge required here can include 

choosing appropriate threshold values, and appropriate 

parameters for the given method (e.g., k-means, DBSCAN 

(Density-Based Spatial Clustering of Applications with 

Noise), etc.).  A QC step would also be required to ensure 

that picks are reasonable. 

 

The method proposed in this study differs significantly from 

previous work.  Clustering is not used to identify picks in a 

single semblance panel.  Instead, the method begins by 

collecting all semblance maxima in a panel, without 

requiring any knowledge about whether a given maximum is 

a good pick candidate or not.  Clustering is then applied to 

this survey-wide collection of data to form horizon-like 

groups.  It is at this point that additional knowledge is 

provided by the processor to identify survey-wide horizons 

of picks as appropriate to include in the model or not.  This 

method thus allows the processor to make high-level 

judgements for the entire survey, while relegating tedious 

consideration of individual control points to the UML 

algorithm.  

 

Theory and Method 

 

We normally look at semblance in two-dimensional panels 

with velocity (V) and time (t).  For the survey as a whole, 

however, the semblance is four-dimensional, with inline (IL) 

and crossline (XL) as well.  It is useful to think of all 

semblance peaks associated with a particular seismic event 

as forming a group in this 4D space.  Our objective is to use 

UML to form groups for several seismic events relevant to 

velocity picking.  The projection of such a group into the 3D 

space of t-IL-XL will have the appearance of a time horizon.  

We therefore assume that a UML method such as DBSCAN 

which is appropriate for thin, sheetlike groups, can be used 

to form these groups in 4D space (or 5D space if picking  

(eta) as well).  Here the standard DBSCAN method has been 

modified with a constraint that a group may contain only one 

member from each CDP location, which strengthens its 

similarity to a horizon. 

 

The group building process consists of the following four 

steps: 

 

1) Scan through each control point in the survey to identify 

all semblance maxima greater than some threshold.  This is 

performed automatically, requiring no interaction from the 

processor.  At this point we also are not concerned whether 

a given maximum belongs in the velocity model, so we do 

not need to build into the algorithm any knowledge of what 

constitutes a good pick or a bad pick.  A variety of methods 

could be imagined for locating these maxima, including the 

UML methods cited earlier.  In this study we have used a 

very simple approach of calculating semblance values on a 

grid, and identifying as maxima those points whose 

neighbors all have smaller semblance values.  This is 

followed by performing a simple quadratic interpolation to 

locate a refined maximum near the selected grid point. 

  

2) For each semblance maximum, identify in each 

neighboring CDP location the semblance maximum closest 



UML velocity picking assistant 

to it in t-V (or t-, or t-V-) parameter space.  For example, 

in Figure 1 we see cartoons of semblance panels for three 

consecutive control points, generically labeled n-1, n, and 

n+1.  In each semblance panel are depicted three semblance 

maxima labeled Ai, Bi, and Ci.  The Ai and Ci peaks 

correspond to shallow and deep reflection events.  The Bi 

peaks correspond to random semblance noise with no 

geological significance.  Each arrow points from a peak in 

one panel to that peak in a neighboring panel which is closest 

to it in t-V space. 

 

 
 
Figure 1: Illustration of steps 2 and 3 of the group building process, 

as described above and below. 

 

3) Identify pairs of maxima which are in neighboring CDP 

locations and which are each other's closest neighbors in 

parameter space.  These will be called connected pairs.  For 

instance, in Figure 1 we see that semblance maxima from 

neighboring panels corresponding to the same geological 

event tend to be each other’s closest neighbor in t-V space, 

while maxima arising from random semblance noise do not 

tend to form pairs.  By considering only connected pairs, the 

algorithm focuses on geologically significant information in 

the semblance panels. 

 

4) Apply a DBSCAN-type method to build groups of 

connected pairs.  The DBSCAN method depends upon a 

concept of closeness.  In this application, two peaks are 

considered close to each other if they are a connected pair.  

For a 3D survey each peak can belong to four different 

connected pairs with its nearest neighbors.  This supports the 

creation of sheetlike groups of all peaks corresponding to the 

same reflection event. 

 

The above method allows us to create geologically 

meaningful groups in 4- or 5-dimensional space.  While we 

cannot visualize such groups, we can understand and QC 

their essential information by using projections into 2- or 3-

dimensional space, as illustrated in the next section. 

Results 

 

This method has been applied to a land dataset from the 

Utica basin (Sherrodsville).  The method was applied twice, 

once in each of two stages: 

 

First Stage:  from 5D picking 

 

In the first stage, an anisotropic V+ model was obtained by 

forming groups in 5-dimensional t-V--IL-XL space using 

the four steps described in the previous section. For 

efficiency, a velocity function was manually picked at a 

central control point and was used as a 1D guide function for 

a %-velocity scan in the first step. After the group building, 

each point in a group was identified by a quintuple of values, 

(ti, Vi, i, ILi, XLi), and the group could be visualized by 

projection into various subspaces. 

Figure 2a shows projection into t-V space and has the 

appearance of a typical semblance panel.  Appropriate 

display tools were created to aid the user in selecting groups 

corresponding to primary events.  Each decision by the user 

was applied to a large portion of the survey at once, rather 

than requiring many decisions to be made at individual 

control points. 

Figures 2b-2d show projections into t-IL-XL, V-IL-XL, and 

-IL-XL spaces respectively.  These have the appearance of 

horizons, with the t-horizon being quite sharp, the V-horizon 

somewhat fuzzy, and the -horizon very diffuse.  The  

model of Figure 2d was spatially smoothed, with a result 

displayed in Figure 2e.  This smooth  result was held fixed 

for the remainder of the velocity model building, and the 

vertical velocity values were repicked in the second stage. 

 

Second stage: refined velocity from 4D picking 

 

A refined anisotropic velocity model was obtained by 

forming groups in 4-dimensional t-V-IL-XL space with the 

smoothed  model held fixed. This allowed us to use a finer 

velocity grid for calculation of the 2D anisotropic semblance 

panel at each control point.  Groups were formed using the 

same four step procedure, which was able to create a good 

quality anisotropic velocity model, as illustrated in Figure 3. 

 

In the process of obtaining this final result, we applied QC 

and refinement tools to the initial groups. Several tools were 

created to assist the user in rejecting outliers, interpolating 

missing points, combining subgroups, etc.  An illustration of 

this is shown in Figure 4. 
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Figure 2.  Various projections of the 5-D groups from the first 

stage of velocity model building: a) projection into the t-V (i.e., 

ttwo-way-VRMS) parameter space of a typical semblance panel.  Each 

color represents a different group, and each point represents the 

semblance maximum at some CDP location.  b) projection into t-

IL-XL space, where each group resembles a typical time horizon.  

c) projection into V-IL-XL space, forming velocity horizons.  d) 

projection into -IL-XL space, forming very diffuse  horizons, 

because of  scatter.  e) same as d), but after spatial smoothing of 

the  values within each group. 

Additional comments 

1) Dip volumes can be optionally incorporated into the 

group building to account for structure in determining 

closeness of two semblance maxima in adjoining locations. 

2) As a byproduct, groups can be used to generate time 

horizons (Huang et al., 2020).  Alternatively, one can use 

existing horizons as scaffolding to help in forming groups. 

 
Figure 3. An example of results from this method: a) CDP gather 

with primaries flattened inside the mute, b) vertical velocity 

semblance panel, and c)  semblance panel.  Horizontal lines in the 

semblance panels represent horizon values at this location.  The 

horizons were picked using an automatic method, and were used to 
aid in forming some of the groups. 

 

3) As a benefit, this method lends itself to geologically 

consistent velocity picking. 

4) Another significant benefit is that, because of the nature 

of the group-building algorithm, dense picking of velocities 

is easier than sparse picking. 

Conclusions 

 

More than just a new technique, this approach represents a 

novel paradigm for machine learning in seismic processing.  

Rather than replace a human, this method augments the 

skills of experienced processors; UML performs repetitive 

tasks, while the processor still interactively creates the 

velocity model.  Such a philosophy has also been applied to 

seismic interpretation (Lowell & Erdogan, 2019), and has 

been advocated more generally (Kasparov, 2017; De Cremer 

& Kasparov, 2021). 

 

Expecting black-box automation to replicate the results of 

capable processors is often unrealistic.  This alternative 

approach simplifies development, speeds up processing, and 

yields quality products.  
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Figure 4. On the left are map displays of velocity near the time marked by the red boxes over the semblance, on the right.  (a) and (c) show 

velocities for a group near this time, with small black dots representing missing picks, i.e., control points not represented in the group.  (e) 
shows a velocity time slice near the same time.  The semblance is shown with a mispick in (b), a missing pick after outlier removal in (d), and 

a reasonable pick after spatial interpolation in (f). No smoothing is applied to the result. This figure illustrates how the processor can use global 

operations to refine results interactively across the survey without needing to make changes at individual control points. 

Intermediate 

group with 

small number 

of outliers:  

Blue-circled 

high velocity 

on map 

corresponds to 

mispick in the 

red box on the 

semblance 

panel. (Blue 

points 

correspond to 

low velocity 

mispicks.) 

 

After the 

application of 

global outlier 

rejection 

algorithm:  

Mispick is 

replaced with a 

missing pick, 

which yields 

too low of a 

velocity. (Note 

low-velocity 

mispicks are 

also gone.) 

 

 

 

After the 

application of 

a global spatial 

interpolation:  

Missing points 

in groups are 

linearly 

interpolated 

from nearest 

neighbors, 

yielding 

reasonable 

velocity 

values. 


