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Summary 

 

Iterative data-domain least-squares migration can overcome acquisition limitations and recover the 

reflectivity for desired amplitudes and resolutions. However, migration noise due to velocity errors and 

multiple scattering energy related to strong contrasts in the velocity model can be erroneously enhanced 

as well. In this complex case, many extra iterations are needed to achieve the final desired image. 

Regularization can be applied at each least-squares iteration in order to suppress migration artifacts and 

improve inversion efficiency. However, in sedimentary layers, without proper fault constraints, the 

regularization cannot preserve the real geological features in the image. In this work, we propose to use 

convolutional neural networks (CNNs) to automatically detect faults on the migration image first, and 

then to use the picked fault information as a weighting function for regularization during least-squares 

migration. With proper training, our 3D predictive model can learn to detect true fault features and avoid 

erroneous picks of swing noise on the validation dataset. An offshore Brazil field data example in the 

Santos Basin demonstrates that our final least-squares migration images show enhanced fault structure, 

minimized migration artifacts, significantly increased image bandwidth and improved illumination after 

only a few iterations. 
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Introduction 

 

Many field data examples of data-domain least-squares migration (LSM) have shown that this method 

can overcome limitations of conventional depth migration, including limited image wavenumber 

content, biased illumination under complex geology and artifacts due to acquisition limitations (Wang 

et al., 2013). LSM estimates the reflectivity model by finding the best least-squares fit of the modeled 

data to the observed data, using gradient-based iterative methods. However, one cannot match all the 

complex features present in field data with only a linearized Born modeling operator. Without any 

constraints on the inversion gradient, the noise content will also increase with iterations. This increased 

noise mostly arises from velocity model error, a wider bandwidth of pre-existing linear noise in the data 

and back scattered energy due to the presence of strong contrasts in the velocity model (Wang et al., 

2016). A successful inversion result requires many more iterations in this case in order to achieve the 

desired image with high signal-to-noise ratio.   It is not efficient for production, especially when applied 

on high quality large scale multi-client projects which have strict turnaround time.  The unacceptably 

high computational cost for attenuating these kinds of artifacts necessitates a regularization approach 

that can help to attain a noise-free imaging result more efficiently. Many regularization approaches have 

been applied to impose constraints on the estimated gradient model, such as shaping regularization and 

dip filtering in the angle domain to reduce the effect of noise. These approaches work by imposing 

structure-enhancing filtering operators on the gradient to remove noise while preserving structural 

information like dipping faults. They essentially calculate semblance along various dips and can detect 

vertical discontinuities and linear faulting along features in the reflectivity, helping LSM to preserve 

this kind of information. However, in shallow sedimentary layers where fault planes are sharp and clear, 

without proper fault constraints these regularization operators may smooth through rather than preserve 

these geologic features in the image. To impose explicit constraints on fault planes during LSM, we 

propose to use convolutional neural networks (CNNs) to detect faults on the migration image first, and 

then to use the picked fault information as a weighting function built into the regularization scheme 

during LSM.  

 

Fault picking based on deep learning 

 

Numerous methods have been proposed to detect faults by calculating attributes of seismic reflection 

continuity such as semblance and coherency (Wu, 2017). These seismic attributes, however, can be 

sensitive to noise and stratigraphic features. Machine learning is becoming more useful in seismic 

interpretation, with one of its most successful applications being for fault picking on seismic images. 

Most recently, some CNN methods have been introduced to detect faults by pixel-wise fault 

classification (fault or non-fault) with multiple seismic attributes (Wu et al., 2019). Here we follow the 

work of Wu et al., which considers fault detection as an efficient end-to-end binary image segmentation 

problem by using CNNs. It generates accurate fault likelihood maps on real datasets by using multiple 

powerful CNN architectures to obtain superior segmentation results. We use an efficient end-to-end 

CNN, simplified from U-Net (Ronneberger et al., 2015) and a balanced cross-entropy loss function for 

optimizing the parameters of the CNN model. Also, to avoid tedious work and obtain a large set of 

learning data, we use their approach to generate 3D synthetic seismic images and corresponding fault 

interpretations by randomly choosing a combination of parameters plus artificial noise to train and 

validate the neural network.  

 

We train our CNN model in two steps. First, we repeat the procedure of Wu et al. by training and 

validating with 200 and 20 pairs of synthetic seismic and fault images with only random noise added 

on, respectively. The resulting CNN model cannot distinguish between faults and migration swings 

when only random noise is added to a field dataset which is heavily contaminated by cross-line 

migration swings. Since Tensorflow and Keras allow for continued training based on a pre-loaded 

model, we next added migration swings to each synthetic image. Starting from the previous pretrained 

CNN model we continue the training process until the training and validation accuracy converges. The 

CNN model we obtain from this second training step performs better than the pretrained model in 

distinguishing faults from migration swings, for both synthetic (Figure 1) and real datasets (Figures 2, 

4, 5d). As in Wu et al. (2019) the training samples turned out to be sufficient to train a good CNN model 

for our fault detection needs. 
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Figure 1. Fault picking on 

synthetic validation examples: 

Inline (top row) and crossline 

(bottom row) for (a) input 

image for prediction, (b) fault 

prediction using pretrained 

model, (c) final model, and (d) 

true answers. The final 

trained model is generally 

better than the pretrained 

model in avoiding false picks 

on migration noise.  

 

Figure 2. Fault interpretation 

on real data migration: (a) 

input image for prediction, 

(b) fault likelihood prediction 

using the pretrained model, 

and (c) the final model. On 

real data, the final trained 

model also performs better 

than the pretrained model in 

avoiding false picks on 

migration noise. 

 

Least-Squares Migration with structure constraint results 

 

The objective function of regularized LSM can be expressed as: 

 
where 𝑓(𝑚̅) stands for the cost function to be minimized, 𝐴 is the linearized Born modeling operator 

which is the exact adjoint of the migration operator and D is a regularization operator. We adopt 

structure-oriented smoothing with edge-preservation as regularization (Hale, 2009) in LSM to suppress 

migration artifacts caused by irregular sampling or overfitting to the data noise. The semblance 

calculation is based on structural tensors and is imposed as a smoothing weight, which allows us to 

impose fault likelihood as an additional constraint during inversion. In this study, an acoustic one-way 

wave-equation operator and its adjoint are used.  

 

Figure 3. Inline image for Santos Basin field data examples: (a) conventional migration, (b) LSM at 

5th iteration without any regularization, (c) LSM with conventional structure smoothing at 5th iteration. 

 

We demonstrate our least-squares migration algorithm with a field data example in Santos Basin, 

offshore Brazil, migrating to 25 Hz on a small volume of the survey. This is a narrow azimuth dataset 

(NAZ), acquired with 10 cables, 100 m streamer separation and 8 km streamer length. The input data 

underwent a typical processing flow involving denoise, deghost, demultiple and velocity model building 

steps. Although this achieves an overall significant improvement over the legacy data, pre-salt and 

supra-salt images in this area still suffer from uneven illumination, visible migration artifacts, and sub-
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optimal resolution. Figure 3b shows LSM without any regularization constraints at iteration 5. 

Compared to the conventional migration (Figure 3a), LSM shows better events continuity and 

illumination and higher resolution. However, it also boosts noise content and migration artifacts that are 

likely caused by overfitting of some events that were present in the input data but could not be correctly 

modeled by acoustic Born modeling. Figure 3c shows LSM with traditional structural smoothing 

regularization added during inversion, which generally removes the noise but also sacrifices the spatial 

resolution on dipping events and fault plane interpretability. 

 
Figure 4. Santos 

Basin field data 

examples: (a) 

inline image and 

(b) crossline 

image. The inline 

and crossline 

positions are 

indicated on Fig. 

5a. The top row 

is the 

conventional 

migration to 

25Hz; the middle 

row shows the 

final structure- 

constrained LSM 

image at 5th 

iteration; the 

bottom row 

shows machine-

picked fault 

probability. 

 

 

 

As shown in Figures 4 and 5, our deep learning structure-constrained least-squares technique helps 

resolve these problems, and the final image is better suited to reservoir characterization. Figure 4 shows 

the comparison between the final LSM image at iteration 5 and conventional migration in inline and 

crossline directions. With proper weighting during structure-oriented smoothing, the final result shows 

all the benefits of conventional LSM without boosting overfitting noise. Compared with conventional 

regularization, LSM results in higher lateral resolution and clearer, sharper dipping fault planes. Figure 

5 shows a depth slice comparison at around 2.8 km in the same volume. It clearly indicates an 

enhancement in imaging the fault planes and improving spatial resolution, which is quantified by the 

spectrum comparison in Figure 5c.  

 

Conclusion 
 

Many applications of machine learning in seismic processing have shown that this technique is useful 

in geological feature characterization, such as fault and salt interpretation. Our work here demonstrates 

that it is valuable and efficient not only in interpretation but also during image processing itself. The 

data-domain LSM is an iterative inversion process which needs further constraints to converge to the 

most geologically sensible solution. We found that combining machine learning constraints and 

conventional regularization can continue to improve the algorithm’s results and bring LSM closer to its 

full potential.  The current trained fault prediction model can make accurate picks even on noisy field 

seismic data, and the CNN model accuracy can be further improved to help fault interpretation. 

 

(a) (b) 
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With our advanced deep learning structure-constrained LSM algorithm, improved imaging of 

sedimentary geometries and higher accuracy of fault patterns can be achieved within fewer than 5 

iterations for most field data cases. The final least-squares migration images with Santos Basin field 

dataset also show enhanced fault structure, minimized migration artifacts, significantly increased image 

resolution and improved illumination. Modern advanced imaging techniques like FWI and LSM are 

required to run within limited production time for high quality large-scale multi-client projects. With 

help from machine learning, our highly efficient and automated LSM technique is making this possible.  

 

Figure 5. Depth slice 

at around 2.8 km of 

the Santos Basin field 

data examples: 

(a) conventional 

migration image; 

dashed lines show the 

location of the inline 

(Fig.4 a) and 

crossline (Fig.4b), (b) 

final structure-

constrained LSM 

image at 5th iteration, 

(c) whole volume 

spectrum comparison, 

and (d) machine-

picked fault 

probability. 
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