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Consider the situation with a velocity anomaly whose 
physical dimensions are much larger than the seismic wave-
length. In this case, describing the propagating wave-front with 
representative ‘rays’ (normal to the wave-front) is acceptable 
as Snell’s law adequately describes the refractive and reflective 
behaviour at the interfaces of the anomalous velocity region. 
Conversely, once the velocity anomaly is of similar scale length 
to the seismic wavelet, then diffraction phenomena dominate, 
and it is then scattering which governs the behaviour of the 
wave-front. Consider a low-frequency sound wave encountering 
an irregularly-shaped boulder. As the sound-wave passed, the 
entire boulder would vibrate, radiating energy in all directions, 
effectively acting as a secondary source. Trying to apply Snell’s 
law at each point on the corrugated boulder’s surface would be 
meaningless.

Whereas travel-time tomography iterates with renditions of 
ray tracing, with waveform tomography one must iterate with 
renditions of the propagating waveform using repeated forward 
modelling with, for example, finite differences – which is more 
costly than ray-tracing (e.g. Pratt et al., 1996; 2002; Sirgue and 
Pratt, 2002; 2004; Plessix and Perkins 2009; Warner et al., 2010). 
Using the starting guess of the model, a finite difference mod-
elling exercise (of limited bandwidth) is undertaken to make a 
synthetic version of the recorded field data. The real and synthetic 
modelled data are then compared (e.g. by subtracting), and the 
waveform tomography iterates to update the gridded velocity 
model so as to minimize the difference between the recorded and 

Introduction
Migration can only construct reliable images of the subsurface 
if we have an accurate representation of the parameter variation 
within the earth. Consequently, our industry has spent many years 
developing model building tools to estimate these parameters, the 
most important of which is velocity. Velocity variation can be clas-
sified on the basis of the scale length of the variation as compared 
to the wavelength of the seismic wavelet. (Note that throughout 
this text, I’ll be using the word velocity very loosely: in general, I 
mean any parameter governing wave propagation). If the velocity 
scale length is much greater than the seismic wavelength, then 
ray-based tomography (using only travel-time information) can 
resolve the features. If not then this (high-frequency) ray approach 
is inappropriate, as diffraction (scattering) phenomena will pre-
dominate, and then waveform tomography (also referred to as ‘full 
waveform inversion’ (FWI) and ‘diffraction tomography’), which 
uses the wavelet-shape as well as arrival-time information, must 
be used instead. The techniques behind FWI were first introduced 
by Tarantola (1984; 1987; 1988) with other developments such 
as by: Lailly (1983); Worthington (1984); Mora (1988); Schuster 
(1993); Pratt et al. (1996; 1998); Sirgue and Pratt (2004); Plessix 
(2006, 2007); Symes (2008); Vigh and Starr (2008); Virieux and 
Operto (2009); Warner et al. (2010); Wang et al. (2011); Yingst et 
al. (2011); and Virieux et al. (2017). However, Tarantola’s ambition 
was to directly invert for physical earth properties rather than the 
somewhat less ambitious objective of simply making an improved 
model for depth migration.
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Tutorial: the mechanics of waveform inversion

Abstract
Unresolved velocity anomalies lead to distortion in images: consequently, much effort has gone into developing 
model-building techniques to identify such anomalies. Historically, the industry has relied on ray-based tomography 
to achieve this, but ray methods are limited to detecting features that are typically larger than about five times the 
dominant wavelength of the recorded seismic data. More recently, model building based on wavefield tomography has 
been introduced (full waveform inversion). Waveform inversion methods are more costly than ray methods, but have the 
potential to resolve features smaller than the recorded seismic wavelengths.
Using waveform inversion to update a parameter field comprises two main steps: firstly, determine the spatial location 
of where an observed error came from, and then, determine the magnitude of that error, so as to update the parameter 
model. The first step uses the same principles as reverse-time migration to construct an ‘image’ of the parameter error, 
and the second step employs gradient descent methods to estimate the magnitude of the required parameter update. 
In this tutorial, I will describe both steps of the waveform inversion procedure, and also discuss differing methods of 
characterizing the error in a given parameter model.
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step in FWI (namely determining where in the subsurface an 
observed error originated).

Determining where something came from: using 
wavefields to build images
Building an image based on wave propagation, relies on forward 
modelling of waves emanating from the source location, and 
reverse modelling of the waves recorded at the actual geophones 
or hydrophones. These two modelling exercises use a full solution 
of the acoustic wave equation, in order to handle energy travelling 
in any direction (the two-way wave equation), and the industrial 
standard algorithm for imaging with this method is reverse-time 
migration (RTM).

How can we describe a reflection in terms of the downgoing 
and upcoming wavefields? By definition, if the downgoing and 
upcoming wavefields are in the same place at the same time, then 
there must be a reflector there. This is Claerbout’s imaging condi-
tion principle (Claerbout, 1971; 1985). Employing a finite-differ-
ence (FD) algorithm, we can use this principle to form an image by:
1. � Forward modelling a synthetic shot (i.e. evaluating what the 

expanding wavefront looks like at incremental steps of a few 
milliseconds of propagation time).

2. � Back-propagating the recorded data (i.e. evaluating what 
the recorded field data looked like for previous propagation 

modelled data. In principle, this technique can resolve features 
smaller than the seismic wavelengths available in the recorded 
data, as real phase and amplitude changes are very sensitive to 
slight variations in the parameters governing propagation.

In this tutorial, I’ll outline the key stages involved in con-
structing a waveform inversion algorithm (assuming that we have 
obtained a good estimate of the wavelet for use in the forward 
modelling), namely:
1.  form a representation of model error,
2. � determine where in the earth (which model cell) this 

observed error came from,
3. � find the magnitude of the required velocity update for each 

model cell so as to minimize the model error.

In its simplest form, the first of these steps is achieved by simply 
subtracting the recorded field data and the forward modelled data 
(formed using the current velocity model). Later in the tutorial, 
I’ll describe some other methods to achieve this.

The second and third tasks are much more demanding, and 
I’ll begin this tutorial describing them. However, before delving 
into the vagaries of waveform inversion itself, I’ll first review and 
recap the details of subsurface imaging based on wave propaga-
tion. The reason for this diversion is that the principles employed 
in wavefield extrapolation migration are also central to the second 

Figure 1 The migration imaging condition. a) Simple reflection from a flat event. b) Downgoing source-side wavefield for two-way propagation. c) Upcoming receiver-side 
wavefield. d) Imaging condition forms the final image plus cross-talk terms (e.g. the grey regions along coincident portions of the ray-paths). Adapted from Jones et al. 
(2017).
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Alternatively, if we had an overhanging interface in a medium 
with significant vertical velocity gradients where both the source 
and receiver-side wavefields turned, then the image could be 
formed from these turning waves reflecting from the underside 
of the overhang: in this case the useful contribution would be 
formed from the terms (Su * Rd). Hence, RTM has the benefit of 
being able to form an image from illumination along complex 
travel paths, but has the downside of producing all combinations 
of the wavefields even when they do not physically exist, i.e. the 
crosstalk noise problem. The low frequency low wavenumber 
background ‘image condition’ noise is seen in most places in 
a raw RTM image above the point where the critical angle is 
reached for either the downgoing or upcoming wavefields. These 
cross-talk artefacts will be revisited a bit later, as it turns-out that 
they constitute the ‘rabbit ear’ components of the FWI gradient, 
and are of use in updating the parameter model.

Figure 2 shows a real salt diapir ‘raw’ RTM image before and 
after filtering to remove cross-talk contamination. In Figure 2a, 
the low frequency background ‘image condition’ noise is seen in 
most places above the point where the critical angle is reached for 
either the downgoing or upcoming wavefields. After suppression 
of the noise with filtering of the image or angle gathers, we obtain 
the result shown in Figure 2b.

Using the RTM imaging condition to facilitate 
model update
Now consider a twist on the approach just described for imaging 
using RTM, and rather than asking where in the subsurface a 
reflection came from, let’s try to ascertain where in the subsurface 
an observed velocity error came from. First let’s state what we’d 
like to achieve in order to solve the problem: iteratively modify 
the parameter model so as to minimize the difference between 
observed waveform amplitudes on the real data, and modelled 
amplitudes in synthetic shot gathers created using the current 
parameter model.

As with RTM, we use an imaging condition to combine 
back-propagated receiver-side information with forward-prop-
agated source-side information, to tell us ‘where in the sub-
surface’ something came from. With RTM we seek the spatial 

times, working backwards from the final recording time to 
time zero).

3. � Multiplying these two extrapolated wavefields together at 
each corresponding propagation time-step.

4. � Summing the results for all propagation steps.

As the above procedure involves summing products, it constitutes 
a convolution, and is thus referred to as the convolutional 
imaging condition in shot migration: the image is being formed 
by what is essentially a convolution of downgoing and upcoming 
wavefields (e.g. Bancroft, 1997, 2007). This process is repeated 
for all available shots, and all these overlapping 3D shot-contri-
bution volumes are summed to form the full migrated image of 
the study area. A tutorial overview of these concepts is given in 
Jones (2014) and Jones et al. (2017).

Cross-talk imaging artefacts in RTM: ‘one man’s 
meat is another man’s poison’
In its simplest form, the convolutional imaging condition for two-
way acoustic migration produces four image contributions, not 
all of which may be desirable at any given subsurface location. 
Consider a source wavefield S, with downgoing and upcoming 
components Sd and Su, respectively and a back-propagated receiv-
er wavefield R, with upcoming and downgoing components Ru 
and Rd. The convolutional imaging condition for a shot record is 
formed by the superposition of the source and receiver wavefield 
products at all coincident times integrated over time:

Image = S * R = (Sd + Su) * (Rd + Ru) = Sd * Ru + Sd * Rd + Su * Ru + Su * Rd � (1)

This is followed by summation of all shot contributions (e.g., Liu 
et al., 2011).

For a simple reflection from one-way propagating wavefields 
illuminating a flat reflector, only the first of these terms Sd * 
Ru would represent the desired physical image (Figure 1a). If 
using a two-way propagator (Figure 1b, c) then an image of a 
steep event illuminated by a double bounce on the receiver-side 
would be formed from the terms Sd * Rd and by a double 
bounce on the source-side from the terms Su * Ru (Figure 1d). 

Figure 2 a) Shallow section from the RTM image prior to filtering the backscattered noise; b) Image from later stage in the model-building after filtering of RTM angle gathers 
(From Jones and Davison, 2014: ION RTM image shown courtesy of Talisman Sinopec Energy UK and partners GdF-Suez, EON, & Idemitsu. Input data courtesy of CGG).
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location of an image contribution from a given shot gather, 
but for FWI we seek the spatial location of the velocity model 
error that produced the observed shot gather ‘residual’ (i.e. a 
characterization of the difference between the observed and 
modelled shot record): this was described by Tarantola (1984). 
In its simplest form, the residual will be the difference between 
the observed and the modelled data, but could also be formu-
lated as the shaping filter that matches them (e.g. Warner and 
Guasch, 2016) or the time or phase shift that aligns them (e.g. 
Vigh et al., 2016; Vigh et al., 2017; Fu et al., 2017; Schuster, 
2017). As well as determining where the error came from, we 
also need to formulate a relationship between the magnitude of 
the error, and the actual parameter perturbation at that location 
that will ‘fix it’.

Given that we want to minimize this ‘residual’ (often simply 
the difference between the observed and forward modelled data), 
how do we set-up the problem to achieve this numerically? We 
can use least squares minimization. For observed data d0, and 
synthetic data d(m) created with model m, the residual is:

residual(m) = [d0 - d(m)] � (2)

In its simplest form, the ‘cost function’ C(m) (also known as the 
‘objective function’) that we need to minimize is:

C(m) = ∑ ∑ ∑ [ residual(m) ]2 = ∑ ∑ ∑ [d0 - d(m)]2 = <d0 - d(m)>2 � (3)

Summing over: all shots in the survey, all traces in the shot-gath-
ers, all time samples in the traces.

In order to minimize the cost function (evaluate its variables 
when it approaches zero), we form the derivative of C(m) with 
respect to the model parameters (in most cases, velocity) to relate 
the change in C(m) to change in the model:

∂C(m)/∂m = ∂[<d0 - d(m)>2]/∂m 	
	  = -2 <d0 - d(m)> ∂d(m)/∂m � (4)

Note: the field data, d0, is NOT a function of the model we are 
using.

This derivative will ideally become zero when we have the 
‘correct’ model values: i.e. for model (m+∆m), where ∆m is the 
perturbation required to correctly update the initial model m. So, 
writing: ∂C(m+∆m)/∂m = 0, and expanding this as a Taylor series 
to 1st order gives:

∂C(m+∆m)/∂m = ∂C(m)/∂m + ∂2C(m)/∂m2 . ∆m = 0� (5)

Or, after rearranging, we note that the desired model perturbation 
is:

∆m = - [∂2C(m)/∂m2]-1 . ∂C(m)/∂m � (6)

where the term ∂C(m)/∂m is referred to as the gradient (i.e. the 
‘direction’ of required model parameter update), and [∂2C(m)/∂m2] 
is referred to as the Hessian.

To determine ∆m, we thus need to solve for the inverse 
of the Hessian, but this is either costly or impractical, so this 
is typically addressed with an approximate iterative inverse 
technique. We also need to evaluate the gradient (the derivative 
of the cost function: ∂C(m)/∂m). What this entails is finding the 
spatial location of the current observed residual error: we can 
achieve this by using the RTM engine to back-propagate this 
error in conjunction with an estimate of how the downgoing 
source side information also changes with respect to model 
error. This latter aspect is evaluated as follows: recall that the 
propagating wavefront is governed by the (acoustic) wave 
equation:

∇2u = v-2∂2u/∂t2 � (7)

where v is the P-wave propagation velocity, and u is the particle 
displacement. Consequently, to consider how the behaviour of 
this propagating wavefield will change as a function of altering 

Figure 3 Schematic of the formation of the gradient: 
the second time derivative of the forward propagation 
source wavefield is ‘convolved’ with the back-
propagated residual.
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This gradient gives us an initial estimate of the direction of 
the required velocity change, i.e., whether we need to increase or 
decrease parameter values. In other words, we’ve converted the 
pseudo image change into an associated velocity change. How-
ever, this is only a crude initial estimate of the direction of the 
required update: as usual, many approximations were involved. 
Also, this gradient is essentially only one snapshot of the associ-
ated model error relative to the current model realization, and in 
order to update the model sensibly, we need to evaluate the cost 
function for a range of model parameter values, so as to move 
towards an overall (‘global’) minimum.

Consequently, once we have the general direction of the 
update (the raw gradient), we then need to ‘fine-tune’ the amount 
of update required for this gradient direction, so as to get closer 
to the minimum in the cost function: this is where terms such as 
‘line search’, ‘step length’, ‘steepest descent’, etc. are heard.

Finding the minimum in the cost function
Given the raw gradient formed as mentioned, we now loop over 
several iterations of changing the model parameters, repeating 
the forward modelling to create new synthetic shots, reforming 
the residual, recomputing the cost-function, and checking to 
see if the cost function is getting smaller. After several forward 
modelling exercises with the perturbed model parameters, having 
converged to an acceptable reduction in the cost function for the 
current gradient direction (i.e. several iterative steps along the 
line search direction), we start all over again, once more using 
the RTM engine to back-propagate the latest residual and forward 
modelling the (scaled) source term, to obtain a new ‘raw’ gradi-
ent. Using this new raw gradient direction, we recommence the 
line search. This procedure continues until we find a satisfactory 
(and hopefully global) minimum in the cost function.

This procedure for finding the (global) minimum in our 
objective function can be addressed with many numerical 
methods (steepest descent, non-linear conjugate gradient, etc.). 
I’ll show some graphical representation of this procedure first for 
one, and then for two variables (model parameters).

Consider the velocity model in Figure 4a, where we are happy 
with the values of velocity (and/or all other parameters) in all 
cells except for one. If we perturb the value of this ‘bad’ velocity, 

the model parameters (say, velocity, v), we can take the derivative 
of Equation 7 with respect to v:

∂/∂v (∇2u) = -2v-3∂2u/∂t2 � (8)

Then instead of forming the usual RTM image as the convolution 
of the back propagated data and forward propagated source 
wavelet, we can form a new object as the convolution of the 
back propagated residual with the second time-derivative of the 
forward propagated source term scaled by -2v-3. In this scheme, 
the residual is referred to as the ‘adjoint source’ (e.g. Warner and 
Guasch, 2016).

 (9)

We can use the RTM engine in this way so as to iteratively 
converge on the required velocity update, by first localizing 
the spatial locations of the underlying parameter errors, and 
then using a gradient descent scheme to estimate their numer-
ical values. This first part of the procedure is summarized in  
Figure 3.

In the time-domain, evaluation of Equation 9 requires 
keeping track of the second derivative of the down-going source 
wavefield with respect to time during the downward extrapolation 
procedure, which can be achieved by computing and storing 
these estimates during the forward propagation of the source-
side term (and remember that the input source term represents 
the wavefield at its starting point t=0). So to achieve this, we 
require a reasonable estimate of the source wavelet, which can 
be non-trivial, especially for land data where the downgoing 
wavefield may change rapidly from shot-to-shot due to variation 
in near surface and coupling conditions.

As noted, the first step in this process is to ascertain where in 
the 3D earth-model, the velocity error came from, with a notion 
of whether we need to increase or decrease the velocity i.e. the 
‘direction’ of change, or ‘gradient’. The gradient, as defined 
in Equation 9, is obtained via an imaging condition using the 
back-propagated residual and the second time derivative of 
the forward propagated scaled source term, integrated over all 
propagation times.

Figure 4 a) Gridded velocity model with just one bad value of velocity. b) Gridded velocity model with two bad values of velocity.
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we can observe its effects on the synthetic data computed with 
each of the single-cell perturbed models. If we look just at say 
a single (far offset) trace with one reflection event, and see what 
happens to the measurable arrival time as it shifts slightly due to 
the velocity perturbations we impose on the single ‘bad’ cell, then 
we can form the residual trace for each of these shifts (Figure 5a) 
and from this compute the cost-function given by Equation 3. In 
its simplest form the cost function is just the sum-of-squares of 
the residual for all times, all traces, and all shots, often with some 
muting of undesired events (as will be described later, it can be 
beneficial to deal with reflected and refracted energy separately, 
sometimes also isolating just the very first arrival refraction 
events). The cost function C(m) for this residual is plotted in 
Figure 5b.

The cost-function shown in Figure 5b was for a single wave-
form, and for the variation in a single parameter (the velocity 
giving rise to the far-offset arrival-time), so the cost function 
could be plotted on a single axis. Now consider the velocity 
model shown in Figure 4b, where we have two ‘bad’ cells. If we 
jointly varied these two parameters, we would need two axes to 
plot the cost function, and could then plot it as a contour plot in 
a 2D plane.

Figure 6 shows this 2D plane in ‘model space’ for the two 
variables we are perturbing (the two bad velocity values). We 
could plot the cost function C(m) along one of these axes for 
change in a single variable, as was done in Figure 5b. Alternative-
ly, we could evaluate C(m) for all possible combinations of the 
two model parameters to produce a contour surface of C(m), as 
shown in Figure 6b. (In order to simplify the figures, I have used 
a simple bowl-shaped surface to represent the central region of 
the cost function C(m), rather than the oscillatory function shown 
in Figure 5b).

However, this is difficult to visualize for thousands of param-
eters in a real problem (all the cells in the 3D model), and rather 
than the cost function existing in a 2D plane, it exists in what 
is sometimes referred to as a hyper-plane (or more correctly, a 
higher dimension Euclidean space). Remember that in a realistic 

3D velocity model spanning, say 1000 km2 to a depth of 10 km, 
with model cells of dimensions 100 m*100 m*100 m, we will 
have 10 million cells, and each cell might have more than one 
parameter (v0, ε, δ, ρ, Q, …), all of which might require an update.

For example, consider a model whose starting velocity 
values were at the slownesses represented by the blue dot in 
Figure 6a, with the cost function’s global minimum at the green 
dot. Ideally, to solve Equation 6 in order to find the desired ∆m, 
we would have to evaluate C(m) for all possible combinations of 
the two parameters in order to produce the contour values of the 
cost-function’s surface, so as to identify the location of the overall 
minimum (the green dot). But for the millions of parameters in 
a realistic problem, this is impractical. Consequently, we try to 
solve the problem approximately and iteratively. First, compute 
the gradient at the starting location (blue dot) by using the pseudo 
imaging condition of Equation 9, and extract C(m) along the line 
indicated by the gradient direction at this location (blue dashes). 
The values of C(m) along this direction produce a curve in that 
2D plane, and this curve will have a minimum somewhere, as 
indicated by the yellow dot on the perspective view (6b). If we 
now step along the C(m) curve in the gradient direction to get to 
this minimum (yellow dot in 6c), this will represent a new model, 
which will be a bit closer to the global minimum (the green dot).

However, given that we do not inherently know the required 
length of the step in the current gradient direction, we need to 
search along this line segment in smaller steps until we find the 
current local minimum for this gradient direction (Figure 6d). At 
each one of these sub-steps, which corresponds to a new set of 
model parameters, we have to recompute the forward modelled 
shots, recalculate the residual and associated cost function, and 
see if the new cost function is acceptably small(er) than the 
initial cost function. Note that this really only gets us closer to 
the minimum for this gradient direction, as there is no guarantee 
that a step will bring us right to the actual (yellow dot) minimum. 
Once we have reached the local minimum for this particular 
stepping direction, we start over, and search for a new direction of 
the downhill gradient, once again using the RTM engine, and step 

Figure 5 a) Top: time shift Δt between the field 
data (yellow) and modelled data (blue). Centre: 
far offset traces from ‘field’ and modelled data for 
various model errors. Bottom: residual traces. b) For 
an oscillatory waveform (50Hz Ricker wavelet) the 
cost function for various time shifts resulting from 
the velocity error can be computed as the sum of 
squares of the residual.
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The components of the gradient
There are several contributing parts to the overall gradient, 
related to the various possible ‘wave-paths’. Let us consider the 
origin of these paths, and their separation (as it turns out that it 
can be beneficial to deal with them independently).

In the conventional convolutional imaging condition in 
RTM, the cross-talk terms are undesired, and constitute a class 
of noise that we typically remove with a Laplacian filter. Recall 
from Equation 1 that the two-way migration imaging condition 
produces four terms involving the up and down components 
of both the source and receiver wavefields. In Figure  1d, even 
though we do not want the ‘grey’ cross-talk terms for the image, 
the downgoing source energy is certainly ‘sensitive’ to the 
velocity regime through which it passes, as is the ‘incorrectly’ 
downgoing non-physical back-propagated receiver-side term. 
So the non-physical parts of the propagation exercise are of use 
in assessing the behaviour of the current model vis-à-vis the 
observed field data.

These coincident non-physical cross-talk wave paths give 
rise to what is sometimes referred to as the ‘sensitivity kernel’ 
and also as bunny or rabbit ears, and can be of use in helping to 
update the velocity model. With these notions in mind, we can 
decompose the overall response of the back-propagated residual 

off in that line-search direction. If the search direction follows the 
maximum downhill dip (i.e. at right angles to the contour), then 
this is called steepest descent method. At the minimum for this 
particular line-search direction (at the yellow dot), the gradient 
direction is tangential to the C(m) contours (as indicated by the 
solid blue curve segment), and thus the next gradient computation 
(the next iteration of FWI) will yield a new gradient direction at 
right angles to the contours. After many right-angled changes in 
direction, we hope to get closer to the global minimum (green 
dot).

Consequently, each ‘iteration’ of the FWI procedure is 
made-up of two parts: firstly using the RTM engine to compute 
the current gradient direction, and then the subsequent search 
for an acceptable minimum in the current line search direction. 
Repeating this line-search stepping procedure along the current 
gradient direction, and then for all subsequent new gradient 
directions, will eventually (hopefully) get us somewhere closer to 
the minimum (green dot in Figure 6d): N.B. the point where the 
minimum is reached for a given line search direction, is tangential 
to the contours. This particular technique is called the steepest 
descent method, but this is not usually used in industrial FWI 
algorithms as its convergence rate is inferior to methods such as 
the non-linear conjugate gradient approach (Shewchuck, 1994).

Figure 6 a) Contour plot of C(m) for two variables, indicating the starting point for model building (blue dot) and its gradient direction (dashed blue line). b) C(m) curve in 2D 
plane along gradient direction with minimum at the yellow dot. c) Contour plot showing minimum in the line-search direction (yellow dot). d) For a given gradient direction we 
search in small steps to locate the local-line-minimum (the yellow dot), before then constructing a new gradient to start over in a new direction. In these graphics, the axes 
represent slownesses in s/km. Adapted from Shewchuk (1994).
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(the gradient), into three constituent parts, which are: the usual 
migration-response-like elliptical arc; the direct arrival ‘banana-
shaped’ transmitted wavefield (refraction) path; and finally the 
‘cross-talk’ rabbit ears (Figure 7). It can be shown that working 
independently with these separated gradient components can 
facilitate faster and more reliable model update (e.g. Bevc et al., 
2008; Ramos-Martinez et al., 2016; Vigh et al., 2017).

For conventional RTM imaging, we would mute-off the 
refracted and direct arrival energy, and then use various filtering 
techniques to remove the cross-talk noise from the final RTM 
image and gathers. However, as can be noted in Figure 7, these 
cross-talk (‘bunny ear’) terms do penetrate deep into the model, 
reaching well below the direct wave (‘banana’ shape response), 
and importantly, their shape will be dependent on the velocity 
model being used in the migration. Hence, we can exploit 
them in the FWI model update scheme, and they can be vital in 

facilitating a deeper model update than is offered by the refracted 
wavefield alone. The relationship between noise filtering in RTM 
and use of these terms for model update was discussed by Douma 
et al. (2010).

The form of the residual
In the technique described so far, the ‘residual’ was formed from 
the difference between the field data shot records and the syn-
thetic forward modelled shots. However, this simple procedure is 
prone to producing cycle skipping (Warner et al., 2013) which is 
likely to cause the FWI to fail (i.e. to get stuck in a local minimum 
in the parameter space). This can be noted from Figure  5a: in 
the fourth model perturbation (shown on the right of the centre 
panel), the modelled wavelet is labelled as being cycle skipped, 
as the trailing trough of the ‘field data’ is aligned with the leading 
trough of the ‘modelled data’ (indicated with an arrow), and the 

Figure 7 The overall gradient response is comprised 
of three constituent parts, which are the direct arrival 
‘banana’ refraction path (a), the usual migration-
response-like elliptical arc (b), and finally the ‘cross-
talk’ rabbit ears which have much lower amplitude (c). 
(Courtesy of Chao Wang, ION)

Figure 8 a) Single ‘field’ shot record, b) The modelled 
shot for the initial model, c) The residual shot before 
FWI. The field and modelled shot records should 
be balanced to give an overall amplitude match. 
Synthetic data courtesy of Chevron.
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the real and modelled data must again closely resemble each 
other. In other words, we have converged on an acceptable 
velocity model (e.g. the adjustive-FWI approach of Jiao et 
al., 2015; Vigh et al., 2017; Wang et al., 2018). There are also 
variants of this approach that perform the time-shift matching 
only for a few selected arrivals (a ‘skeletonized’ approach, e.g. 
Schuster 2017): this then looks even more like ray tomogra-
phy, as it involves picking and using just a few events. If just 
the first arrival refractions are selected, then this FWI variant 
can be thought of as a ‘fat-ray’ refraction tomography (e.g. 
Zhang, 1999).

• � Concentrate only on the phase behaviour of the observed and 
modelled data, e.g. by replacing the amplitude spectrum of 
the modelled data with that of the field data trace-by-trace in 
small sliding windows (e.g. Maharramov et al., 2017; Schuster 
et al., 2017).

The appearance of the gradient
In order to see how an individual shot contributes to the overall 
update, and for purposes of instruction, let us first back propagate 
a single wavelet from within a shot’s residual, and then the entire 
shot, and look at their contributions to the gradient: this will 
produce something analogous to a migration impulse response. It 

residual C(m) can then be smaller than it would be for other 
intermediate alignments when no peaks or troughs were aligned.

What can we do to mitigate this problem? We could perhaps 
firstly put in a lot of effort with another model building technique, 
such as ray-tomography and hope that it was a good starting 
point for FWI (i.e. close enough to the global minimum), or 
acquire data with very low frequencies which suffer less from 
cycle skipping (<2 Hz), or we could form alternative ‘residuals’ 
such as those based on optimal transport schemes (e.g. Yang and 
Engquist, 2018) or the better known alternatives listed below.
• � Design a matching filter that makes the real data look like the 

synthetic data (or vice versa). Iterate until this filter becomes 
a ‘spike’ (a band limited delta function). Once the filter is 
‘spike-like’ it must mean that no more matching is needed as 
the real and modelled shots now resemble each other closely. 
In other words, we have converged on an acceptable velocity 
model (e.g. the adaptive-FWI method of Warner and Guasch, 
2014a, 2014b; 2015).

• � Correlate the real and synthetic traces (in sliding windows) 
to compute a time-shift or associated phase-shift, and iterate 
until the time or phase shifts become zero (this approach 
begins to look like ray tomography, as we are only consider-
ing the kinematics). Once the time-shift approaches zero, then 

Figure 9 a) Residual gather with just a single wavelet, at offset 5 km and around time 3.7s (shown in the black circle). b) Gradient contribution from the single wavelet. The 
locations of the source (blue star) and receiver at 5 km offset (green triangle) are indicated. c) Entire residual shot gather and its gradient contribution d). Synthetic data 
courtesy of Chevron
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tells us that the model update contribution could have come from 
anywhere along the observed impulse response shape; we need 
to sum the gradient responses for many traces and many shots so 
as to rely on destructive and constructive interference to build a 
meaningful error contribution location (as indicated by the total 
gradient).

Figure 8 shows a single field shot record from 2D synthetic 
data, the modelled shot corresponding to the starting model, 
and the residual gather, before FWI. Deleting all values in the 
residual gather, except for a single wavelet, at offset 5 km and 
around 3.7 seconds, yields the gather shown in Figure 9a. The 
surviving wavelet is shown within the black circle. Subjecting 
this residual gather to the FWI procedure produces the gradient 
contribution shown in Figure  9b. The locations of the source 
(green star) and receiver at 5 km offset (green triangle) are 
indicated. Repeating this procedure for the entire residual shot 
gather (as is usually done, albeit with some judicious muting) 
produces the gradient contribution shown in Figure  9d. It can 
be seen for all these gradient images that they closely resemble 
migration impulse responses, and include typical migration 
‘noise’. Comparing the gradient elements from Figure 9, it can 
be noted how they resemble the elements of the simple synthetic 
gradients in Figure 7.

Figure 10a shows the preSDM image for these 2D synthetic 
data with the single shot’s gradient contribution (from Fig-
ure 9d) superimposed. The source location and the 8 km cable 
length are indicated. After summing the gradient contributions 
for all shots from the seismic survey, we see the resulting final 
gradient in Figure 10b: this is now something that is useful and 
indicates where we need to increase or decrease the velocity 
in the model. However, given that the gradient is constructed 
using a migration procedure, it can suffer from migration noise 
and acquisition footprints as with imaged data. Hence, data 
conditioning of the gradient at each iteration can be beneficial, 
especially for narrow azimuth data where the acquisition 
footprints will be more pronounced. Note also that it is unlikely 
that there will be meaningful contributions to the gradient from 
within the water layer, hence we need to mute the gradient 
contribution in the water layer, as this contribution essentially 
constitutes migration noise.

Discussion: practical aspects of industrial 
implementation
During FWI model update, we typically iterate over many dozens 
of gradient computations, each with a few line-search steps. In 
these iterations, we can adjust the frequency and offset ranges 
used. The cost function shown in Figure 5 for a broad bandwidth 
wavelet was highly oscillatory, producing various local minima 
associated with cycle skipping between the field data and mod-
elled data waveforms. For lower frequencies, the cost function 
will be less oscillatory, and thus cycle skipping is less likely. 
Consequently, for the earlier iterations of FWI it is beneficial to 
concentrate on the lowest available frequencies in the data. For 
deep subsalt model update, frequencies below about 2 Hz would 
be necessary to facilitate model update (e.g. Shen et al., 2017). 
Also, given that the cost of RTM is proportional to the fourth 
power of the maximum frequency (e.g. Farmer et al., 2006), 
iterating with lower frequencies is cost-effective.

When using the acoustic approximation, we ignore density 
changes, and consequently the modelled reflection amplitudes 
will be in error. Hence for the early stages of model update we 
tend to rely on the diving-wave energy (i.e., the transmitted or 
refracted wavefield). Unfortunately, this only tends to penetrate 
the subsurface to a depth of about one third of the maximum 
source-receiver offset, and if there are significant near-surface 
velocity inversions, we may not receive any useful refracted 
energy (e.g. Jones, 2018).

Hence, the state of the art (at least for data domain waveform 
inversion) tends to rely on long offsets, low frequencies, and to a 
large degree, turning wave data (Plessix and Perkins, 2009; Vigh 
et al., 2009; Sirgue et al., 2009; 2010; Plessix et al., 2010; Wang 
et al., 2011; Sirgue et al., 2011; Shah et al., 2012).

Once the refracted wavefield has been exploited to update 
the shallow sediment model, the reflected wavefield can be used. 
Various techniques exist to do this, primarily using the ‘rabbit 
ears’ resulting from the RTM cross-talk terms shown in Figure 7 
(e.g. Ramos-Martinez et al. 2016; Vigh et al., 2017), or more 
recently, exploiting what is referred to as an ‘extended condition’ 
in the FWI (e.g. the reconstructed wavefield (a.k.a. extended 
source) approach of van Leeuwen and Hermann, 2013; Huang et 
al., 2016; Wang et al., 2016; Wang et al., 2017a; 2017b).

Figure 10 a) PreSDM image with the single shot’s gradient contribution superimposed. The source location and the 8 km cable length are indicated. After summing the 
gradient contributions for all shots, we see the resulting final gradient in b). Blue indicates that we need to increase velocity, and red indicates a required decrease.
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Apart from removing random noise and filtering the gradient, 
no other data processing would usually be necessary in the FWI 
process. Two-way wave equation modelling employed within the 
RTM engine will reproduce surface ghosts and all multiples, so 
these arrivals can be left in the field data, as they help to build a 
usable residual when compared to the modelled data. However, 
if a simple single-scattering Born method is employed for the 
reflection FWI, then multiples and ghosts will need to be removed 
from the field data (as with data for use with ray-tomography) as 
they will not have then been modelled.

Consequently, the overall workflow could be summarized as:
1. � Estimate a ghost-free wavelet (perhaps for each source).
2. � Perform initial model update using a cycle-skip avoidance 

technique, maybe with conventional ray-tomography or 
refraction FWI using a travel-time-based residual or shaping 
filter residual.

3. � Refine the shallow model using refraction least-squares FWI 
increasing the frequency bandwidth so as to obtain better 
resolution (to depth ~ 1/3 max offset).

4. � Update the deeper section using reflection FWI (which may 
require de-multipled data).

In addition, conventional ray-based tomography and interpre-
tational picking of key high velocity contrast layers may be 
employed between any of these various stages. Remember that 
FWI attempts to match real and modelled shot data: it does not 
set-out to produce flat migrated gathers. Hence, we may still need 
to adjust velocities found by FWI with an additional constraint 
in the ‘image domain’, such as is done by image domain ray 
tomography. For data with very problematic near surface issues 
or sparse sampling (such as OBN data), surface wave or guided 
wave inversion could also be employed to constrain the near 
surface model (e.g. Socco et al., 2010; Boiero et al., 2013).

Conclusions
Contemporary implementations of FWI provide a mechanism 
for obtaining high-resolution velocity models suitable for use in 
migrating data from complex regions. In addition, the high reso-
lution models can also be employed as constraints for impedance 
inversion (Cobo et al., 2018; Jones et al., 2018).

However, in Tarantola’s original work (1984), he did not 
conceive of using FWI as a means merely of providing a better 
migration model. His vision was far more ambitious, namely to 
circumvent the need for separate migration and elastic impedance 
inversion completely, by extending FWI in order to solve for 
more elastic parameters and higher frequencies (e.g. Jones, 2012; 
Routh et al., 2017). Unfortunately, this goal is currently just 
slightly beyond the capabilities of current computer power, but it 
is the most likely the way forward for development in the field 
of imaging and inversion, especially given that FWI employs the 
full wavefield: including all the multiples.
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