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ABSTRACT

Because of the conversion of elastic energy into heat, seismic
waves are attenuated and dispersed as they propagate. The at-
tenuation effects can reduce the resolution of velocity models
obtained from waveform inversion or even cause the inversion
to produce incorrect results. Using a viscoacoustic model con-
sisting of a single standard linear solid, we discovered a theo-
retical framework of viscoacoustic waveform inversion in the
time domain for velocity estimation. We derived and found
the viscoacoustic wave equations for forward modeling and
their adjoint to compensate for the attenuation effects in viscoa-
coustic waveform inversion. The wave equations were numeri-
cally solved by high-order finite-difference methods on centered
grids to extrapolate seismic wavefields. The finite-difference
methods were implemented satisfying stability conditions,

which are also presented. Numerical examples proved that the
forward viscoacoustic wave equation can simulate attenuative
behaviors very well in amplitude attenuation and phase
dispersion. We tested acoustic and viscoacoustic waveform in-
versions with a modified Marmousi model and a 3D field data
set from the deep-water Gulf of Mexico for comparison. The
tests with the modified Marmousi model illustrated that the seis-
mic attenuation can have large effects on waveform inversion
and that choosing the most suitable inversion method was im-
portant to obtain the best inversion results for a specific seismic
data volume. The tests with the field data set indicated that the
inverted velocity models determined from the acoustic and vis-
coacoustic inversions were helpful to improve images and offset
gathers obtained from migration. Compared to the acoustic in-
version, viscoacoustic inversion is a realistic approach for real
earth materials because the attenuation effects are compensated.

INTRODUCTION

Waveform inversion is the name given to a set of techniques that
seek to estimate subsurface parameters by minimizing the differ-
ence or residuals between recorded and synthetic seismic data pro-
duced with a specific set of subsurface parameters and forward
modeling equations. The difference to be minimized is constructed
using a specific choice of norm, which will be discussed later.
Waveform inversion is attractive because it has the ability to pro-
duce high-resolution subsurface parameter models for complex
geologic structures (Virieux and Operto, 2009). Lailly (1983), Tar-
antola (1984, 1987, 1988), and Mora (1987, 1988) introduce the
gradient-based waveform inversion in the time domain with its in-
creased efficiency and reduced computational cost. Their methods

make applications possible for data sets of sizes used in exploration
and production; since then, many researchers have achieved sub-
stantial improvements in theory and application. Today, waveform
inversion has become a practical if not quite yet routine tool for
field-scale exploration and production applications (Sirgue et al.,
2009; Prieux et al., 2011; Vigh et al., 2011). An excellent and com-
prehensive review of waveform inversion techniques and applica-
tions has been given by Virieux and Operto (2009).
Waveform inversion is an iterative optimization technique, where

each step in the iteration produces a model update. Each update
must calculate the gradient of the objective function with respect
to the model parameters (Tarantola, 1987, 1988; Virieux and
Operto, 2009). There are three key steps for the calculation of
the gradient in waveform inversion. The first step is the calculation
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of residuals between the recorded and synthetic seismic data. The
synthetic seismic data are obtained through forward modeling, i.e.,
the calculation of seismic wavefields at given positions and times by
solving appropriate wave equations with boundary conditions and
with a chosen set of subsurface parameters. The second step is the
backward propagation of the residuals based on the adjoint-state
method (Tarantola, 1987, 1988; Bunks et al., 1995; Plessix,
2006). The residuals are backward propagated through the adjoint
of forward modeling. Numerical methods such as the finite-differ-
ence, finite-element, finite-volume, and spectral-element methods
are widely used to solve a wave equation and its adjoint (Virieux
and Operto, 2009). The third and final step is the calculation of the
gradient through the crosscorrelation of forward and backward
wavefields at each time step and a summation of the crosscorrela-
tion over all time steps. The gradient indicates the descent directions
within the parameter space to update the current model.
The adjoint-state method is thoroughly explained in the paper of

Plessix (2006), which takes a well-known technique of numerical
optimization to the geophysical community. Basically, the problem
that we are trying to solve is an optimization in functional space,
where the functional that we are trying to minimize is a function of
the model parameters and the wavefields (the state variables) that
we have computed using specific wave equations and boundary
conditions. The wavefields are themselves functionals of the model
parameters. So to compute the gradient of the functional, we should,
in principle, calculate the Fréchet derivatives, i.e., the derivatives of
the state variables (the calculated wavefields) with respect to
the model parameters. The Fréchet derivatives are themselves
extremely expensive to calculate and must be done multiple times
per iteration. With the adjoint state method, one expands the
“Lagrangian,” i.e., the functional to be minimized using Lagrange
multipliers that force the wavefields to satisfy the appropriate wave
equations and boundary conditions. The augmented Lagrangian
contains a term that includes the inner product of the Lagrange mul-
tipliers (the adjoint-state variables) and the wave-equation con-
straint. By exploiting the definition of the adjoint operator, one
can rewrite this term as the adjoint operator acting on the adjoint
variables, so that the variations over the state variables now become
another wave equation (which is acausal) with the residual as
sources. The variation of the Lagrangian with respect to the model
parameters then yields the gradient as a crosscorrelation of the ad-
joint-state variable determined through the forward problem and as
a simple function of the state variables. Because the adjoint state
equation only needs to be solved once per iteration rather than
the multiple times that the Fréchet derivative need to be computed
(once for each small perturbation of the model), this minimizes
computational cost substantially. Plessix describes many applica-
tions such as least-squares migration (Lailly, 1983; Tarantola,
1984), differential semblance optimization (Symes and Carazzone,
1991; Shen et al., 2003) and stereotomography (Billette and Lam-
baré, 1998). For a very lucid application specific to full-waveform
inversion, see Bunks et al. (1995). This is very much in the line with
the teachings of Tarantola (1988; p. 366) who instructs us that “ : : :
methods of inversion based on naïve use of least-squares formulas
do not work. In particular, matrix algebra must not be used and par-
tial (or Fréchet) derivatives of data with respect to model parameters
should not be computed.”
The quality of waveform inversion critically depends on the

adequacy of the forward-modeling wave equation and of its adjoint

to correctly represent the physics for all the waves that we observe
in nature, namely in our data sets (Tarantola, 1988), not only in the
continuous domain but also with their discretized approximations
(Bunks et al., 1995). Here, the wave equations play a crucial role
because the complete and accurate solutions of a wave equation and
its adjoint ensure that wavefields provide useful information to im-
prove parameter models. Depending on the characteristics of the
physical medium, various approximations are made and thus differ-
ent wave equations might be applied. The acoustic wave equation is
applied for acoustic and isotropic media either in the time domain
(Mora, 1987; Bunks et al., 1995; Shipp and Singh, 2002; Vigh and
Starr, 2008) or in the frequency domain (Pratt and Worthington,
1990; Pratt, 1999; Sirgue and Pratt, 2004; Shin and Min, 2006; Op-
erto et al., 2007; Yingst et al., 2011). Anisotropic wave equations
are applied for anisotropic media to improve model construction
(Operto et al., 2009; Lee et al., 2010; Plessix and Rynja, 2010; Gho-
lami et al., 2011, 2012; Wang et al., 2012), and elastic wave equa-
tions are applied for the more general elastic case to obtain more
accurate information of subsurface media (Tarantola, 1986, 1988;
Sears et al., 2010; Oh et al., 2012). The acoustic or elastic wave
equations are adequate to describe wave propagation in lossless me-
dia and are a good choice to solve a lot of practical problems.
However, wave propagation in real earth materials is quite differ-

ent from propagation in an ideal acoustic or elastic medium. The
real earth always attenuates and disperses seismic waves due to
the conversion of elastic energy into heat. This anelastic behavior
can decrease amplitude, distort a wavelet, and thus can have signifi-
cant effects on waveform inversion. For example, gas clouds can
cause strong attenuation of compressional seismic waves. The at-
tenuation effects result in the loss of high frequencies in the re-
corded data and result in the amplitude below the gas clouds to
be anomalously dim. As a result, gas clouds can cause serious dis-
crepancies between the recorded and synthetic seismic data, and
thus reduce the resolution of inversion results or invalidate the re-
sults. Gas clouds are only one example of attenuation of propagat-
ing seismic waves within real earth materials. They indicate that
when the attenuation cannot be ignored, it is necessary to compen-
sate for the anelastic behavior to make inversion results more reli-
able for physical media.
Various models are commonly used to compensate for the ane-

lastic effects in seismology and seismic data processing (Toksöz and
Johnston, 1981). The attenuation coefficient is proportional to fre-
quency in the Kolsky-Futterman model (Kolsky, 1956; Futterman,
1962). A constant-Qmodel (Kjartansson, 1993) is also often used in
the frequency domain (Liao and McMechan, 1996). The standard
linear solid (SLS) model is used in finite-difference methods be-
cause it gives additional differential equations that are able to be
approximated by finite differences (Carcione, 1993; Robertsson
et al., 1994).
A viscoelastic mechanical model consisting of SLS models pro-

vides a powerful tool to model real earth materials through relax-
ation mechanism (Liu et al., 1976; Day and Minster, 1984;
Carcione, 1993; Robertsson et al., 1994). A single SLS consists
of a spring in parallel with a spring and a dashpot in series. It is
able to provide a good approximation to a constant Q within a de-
fined frequency band. A series of SLS models connected in parallel
can yield a quite general mechanical viscoelasticity behavior. In an
SLS, the stress-strain relationship is expressed as a causal time con-
volution of a stress relaxation function with the strain rate. This time
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dependence of relaxation mechanism is governed by stress and
strain relaxation times, which describe the physical dissipation
mechanism that the real earth materials have on wave propagation.
Carcione (2001) presents the relationships between the quality fac-
tor Q and the relaxation times in a given frequency band. Blanch
et al. (1995) estimate the relaxation times from the least-squares
fitting of Q−1 over a frequency range. Finite-difference wavefield
computations implemented on staggered grids have shown that the
SLSs model can simulate realistic wave propagation well in earth
materials (Carcione, 1993; Robertsson et al., 1994; Larsen and
Grieger, 1998).
In his remarkable paper, Tarantola (1988) set out a very general

framework for wave equations for the description of elasticity and
attenuation in realistic earth materials in the time domain. Although
the paper is highly theoretical and does not apply the theory to syn-
thetics and/or real data examples, it sets out a method for the for-
ward problem and the inverse problem through the transpose and
adjoint methods. The attenuation is described by producing a gen-
eralized Hooke’s law whereby the stresses are related to the strains
via a convolution with the rate of relaxation function that is quite
general and can also handle anisotropy in elasticity and attenuation.
We must emphasize that several other authors have applied wave-

form inversion with attenuation for P-wave velocity (VP) and Q,
mostly in 2D or 2.5D in the frequency domain (see the review
of Virieux and Operto, 2009). VP and Q are inverted either recur-
sively or simultaneously (Kamei and Pratt, 2013). In a recursive
method, one parameter is inverted with another parameter fixed
(Smithyman and Clowes, 2013). A specific example is presented
by Malinowski et al. (2011) who applied waveform inversion in
the frequency domain to a 2D land data set in Poland. Their param-
eterization of attenuation is using a complex velocity representation.
They invert for velocity andQ simultaneously, after carefully study-
ing the resolution that this joint inversion provides. Kamei and Pratt
(2013) also present an approach of simultaneous inversion in the
frequency domain by using an attenuation scaling term in their pre-
conditioning operator.
In this paper, we limit our work to viscoacoustic media. We set up

an objective function and derive a normalized gradient for velocity
update through viscoacoustic waveform inversion in the time do-
main. According to the relaxation mechanism in a single SLS,
we derive the viscoacoustic wave equations for forward modeling
and their adjoint. Compared to the acoustic wave equation, the
viscoacoustic wave equations and their adjoint involve a time con-
volution for the relaxation mechanism. The convolutions are ex-
pressed as memory variables and are responsible for attenuation.
The forward operator simulates the attenuation effects and, in con-
trast, its adjoint compensates for the attenuation effects. This com-
pensation for the attenuation of the adjoint was already explained by
Tarantola (1988), where he notes that the general adjoint equation
would be acausal, i.e., propagating backward in time and with “neg-
ative attenuation” but still be numerically stable. We implement the
viscoacoustic waveform inversion by high-order finite-difference
methods on centered grids. The stability requirement for hyperbolic
differential equations on centered grids is given through a Von
Neumann stability analysis.
Our formulation of waveform inversion in this paper follows very

much the lines of the Tarantola’s (1988) paper, where we specialize
to an acoustic approximation and where the rate of relaxation func-
tion is that for a single SLS that describes the attenuation through

the standard variable parameter Q. We rederive the acoustic equa-
tions and their adjoints as well. However, the generalization to a
more complex model of attenuation is straightforward, but not at-
tempted in this paper.
Viscoacoustic forward modeling examples demonstrate that rea-

sonable attenuative behaviors in amplitude attenuation and phase
dispersion can be obtained from our viscoacoustic wave equations.
We apply acoustic and viscoacoustic waveform inversions on a
modified Marmousi model and a 3D field data set from the Gulf
of Mexico (GOM). The tests clearly show some promise in making
waveform inversion more realistic for real earth materials. It is noted
that we employ a recursive procedure, where we first update the
velocity through several iterations of waveform inversion, then
we update the Q model. Having obtained a stable Q model we then
iterate through a velocity inversion step. Again, this is very much in
line with the advice of Tarantola (1988, p. 388), to “first invert for
elastic parameters, and, after convergence, allow attenuation to be
introduced.”
This paper is laid out as follows: In the next section, we set out

the theory deriving the forward and adjoint wave equations for an
attenuation model based on a single SLS. We then follow with a
section showing results on synthetic data and a 3D GOM field
data set.

THEORY

Objective function

We iteratively optimize a velocity model by minimizing the fol-
lowing objective function, which measures the residuals between
the recorded and synthetic seismic data:

JðvÞ ¼ kd0 − αdk22; (1)

where d0 ¼ d0ðxr; t; xsÞ is the recorded seismic data; d ¼
dðxr; t; xsÞ is the synthetic seismic data at time t and at the
receiver located at xr for a source located at xs; and α ¼
hd; d0i∕kdk2 is a normalization scale. In practice, the energy level
of the synthetic data is generally different from that of the recorded
data. The different energy levels between them can cause failure of
waveform inversion. The normalization helps to mitigate this prob-
lem. It is noted that the normalization within the objective function
is a single constant for all traces and all times within one shot. As a
result, amplitude variations are involved in waveform inversion.
In the objective function, different preconditioning methods can

be applied to the recorded and synthetic data to improve conver-
gence and to mitigate the nonlinearity of the inverse problem.
Bunks et al. (1995) present the multiscale strategy of inverting
low frequencies first and progressively inverting higher frequencies.
Sears et al. (2008) and Brossier et al. (2009) demonstrate that win-
dowing the early arrivals or tapering the late arrivals is helpful to
improve the convergence to the global minimum. Shipp and Singh
(2002) indicate that weighting far-offset data is helpful to strengthen
the contribution of large-offset data for the convergence toward
acceptable velocity models.
The gradient for velocity update is given by

gðxÞ ¼ −
4α

v3
X
xs

X
t

∂2P
∂t2

R; (2)
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where P ¼ Pðx; t; xsÞ is the predicted wavefield obtained from a
forward modeling operator and R ¼ Rðx; t; xsÞ is the wavefield ob-
tained by applying the adjoint of forward modeling on the residual
ðd0 − αdÞ. The relationship between d and P is dðx; t; xsÞ ¼
Pðx; t; xsÞjx¼xr .
Some preconditioning methods can also be applied to the gra-

dient to improve the convergence and to mitigate the nonlinearity
of the inverse problem, for example, smoothing and/or filtering the
gradient in the wavenumber domain (Nemeth et al., 1997; Guitton
et al., 2012; Ma et al., 2012) and using depth-dependent weights for
the gradient (Shipp and Singh, 2002; Wang and Rao, 2009). More-
over, the gradient can be normalized by the amplitude of the
forward wavefield to approximately account for geometrical diver-
gence (Gauthier et al., 1986)

gnðxÞ ¼
gðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xs

P
t
P2ðx; t; xsÞ þ γ2

r
;

(3)

where γ is a whitening factor to avoid any singularity.
The velocity model is updated using the Polak-Ribière imple-

mentation of nonlinear conjugate gradient method. A line search
uses the BB formula (Barzilai and Borwein, 1988) for an initial es-
timate of step length. The BB formula effectively provides an initial
guess of the step length for the nonlinear problem because it does
not require extra forward modeling to evaluate the objective func-
tion (Li, 2011).

Viscoacoustic wave equation

In viscoacoustic media, the predicted wavefield can be obtained
by the relationship between pressure and particle velocity for a sin-
gle SLS (Robertsson et al., 1994):

∂P
∂t

¼ −
∂
h
κ
�
1þ τe−

t
τσ

�
HðtÞ

i
∂t

� ∇ · vþ f (4)

and

∂v
∂t

¼ −
1

ρ
∇P; (5)

where ρ ¼ ρðxÞ is the density at the position x, κ ¼ κðxÞ is the bulk
modulus, v ¼ vðx; tÞ is the particle velocity vector, f ¼ fðxs; tÞ is
the source term at xs, and HðtÞ is the Heaviside function. The sym-
bol * stands for a time convolution in equation 4. The convolution
describes the dissipation mechanism in a viscoacoustic medium.
Here, τσ and τϵ are, respectively, stress and strain relaxation times,
and τ ¼ τϵ∕τσ − 1 determines the magnitude ofQ (Liu et al., 1976).
By choosing the center of frequency band for waveform inversion as
the reference frequency, the relaxation times can be calculated from
the quality factorQ according to the methods presented by Carcione
(2001) or Blanch et al. (1995). Finite-difference methods on stag-
gered grids are commonly used to extrapolate the wavefield P based
on equations 4 and 5 (Carcione, 1993; Robertsson et al., 1994).

We start from equations 4 and 5 and derive the following viscoa-
coustic wave equation (see Appendix A) for forward modeling:

1

v2
∂2P
∂t2

¼ ð1þ τÞρ∇ ·

�
1

ρ
∇P

�
− rþ f (6)

with

r ¼ τ

τσ
½e− t

τσHðtÞ� �
�
ρ∇ ·

�
1

ρ
∇P

��
; (7)

where r is a memory variable. Equation 6 describes combined
acoustic and viscous behavior of a material. It indicates that the sec-
ond-order derivative of pressure with respect to time depends on the
values obtained from ρ∇ · ðð1∕ρÞ∇PÞ and their history.

The memory variable r is governed by a time convolution of ρ∇ ·
ðð1∕ρÞ∇PÞ with an exponential function; i.e., the kernel of r is of
exponential character. Here, the exponential function is the relax-
ation function. Because r decays with time, energy is dissipated.
This procedure simulates the attenuation effects in forward
modeling.
To eliminate the convolution in equation 7, we derive the first-

order linear differential equation for r and update it by a recursive
convolution method (see Appendix A):

∂r
∂t

¼ τ

τσ
ρ∇ ·

�
1

ρ
∇P

�
−

1

τσ
r: (8)

Adjoint operator

According to the adjoint-state method (Tarantola, 1987, 1988;
Plessix, 2006), the adjoint of forward modeling is required for
the calculation of gradient. The adjoint backward propagates the
residuals between the recorded and synthetic seismic data by reduc-
ing time. Based on the properties of the adjoint of an operator, we
can verify that the adjoint operator solves the following equation
(see Appendix B):

1

v2
∂2P
∂t2

¼ ∇ ·
1

ρ
∇ð1þ τÞρP − ∇ ·

1

ρ
∇ρ~rþ f (9)

with

~r ¼ τ

τσ
½e t

τσHð−tÞ� � P; (10)

where f is the residual ðd0 − αdÞ, and the memory variable ~r is
the history of pressure and is responsible for the anelastic behav-
ior. The ~r is governed by a time convolution of pressure with an
exponential function. Here, the exponential function is the relax-
ation function. The kernel of ~r is of exponential character too.
Energy now increases with decreasing time in the backward
propagation.
Similarly, we derive the first-order linear differential equation

for ~r and update it by a recursive convolution method (see Appen-
dix B):

∂~r
∂t

¼ −
τ

τσ
Pþ 1

τσ
~r: (11)

Equations 6, 8, 9, and 11 present all operators for wavefield
extrapolation in viscoacoustic waveform inversion to compensate
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for the attenuation effects in a viscoacoustic medium. We calculate
the memory variables r and ~r on the same grids used for the wave-
field P. As a result, the viscoacoustic waveform inversion is able to
be implemented by high-order finite-difference methods on cen-
tered grids.

Stability conditions

Finite-difference solutions introduce numerical dispersion due to
the time and space discretization. The numerical dispersion origi-
nates from two sources in viscoacoustic waveform inversion. The
first source of these numerical artifacts is introduced in the second-
order differential equations 6 and 7 governing the forward and
backward wave propagation. A second type of dispersion is the un-
wanted dispersion from the first-order differential equations 8 and 9
governing the memory variables. We must therefore determine the
spatial and temporal sampling criteria and restrictions to avoid or
minimize these numerical dispersion effects.
The rule of thumb in finite-difference schemes for choosing the

spatial sampling rate Δx based on the Nyquist frequency fN is
Δx ¼ vmin∕ðn × fNÞ, where vmin is the minimum velocity in the
velocity cube, and n is the number of points needed to cover the
Nyquist frequency for nondispersive propagation. The value of n
is scheme dependent. Throughout the paper, we use the Oðm; nÞ
notation to describe the accuracy of the finite-difference schemes
for mth-order accuracy in time and nth-order accuracy in space. Ac-
cording to Dablain (1986), n ¼ 8 for Oð2; 2Þ, n ¼ 4 for Oð2; 4Þ,
and n ¼ 3 for Oð4; 10Þ.
Following the method originally developed by Von Neumann for

the stability analysis of finite-difference solutions (Charney et al.,
1950), the temporal sampling for the hyperbolic differential wave
equations 6 and 9 is chosen to be

Δt ≤
2

vmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ τmaxÞ

p (12)

with

a ¼ 1

Δx2
XN
n¼−N

jwx
nj þ

1

Δy2
XN
n¼−N

jwy
nj þ

XN
n¼−N

jwz
nj

Δz2
; (13)

where vmax is the maximum velocity in the velocity cube; τmax is the
maximum value of the τ cube; Δt is the temporal step size; Δx, Δy,
and Δz are the spatial sampling intervals along the x-, y-, and z-
axes, respectively; and w values are finite-differencing coefficients
in the x-, y-, and z-directions with (2N)th-order accuracy (Dablain,
1986). To reduce computation cost, the interval Δz can be
nonuniform.
Unless otherwise specified for the examples in this paper, we em-

ploy the Oð2; 8Þ scheme for the second-order differential equa-
tions 6 and 9 and employ the second-order Crank-Nicolson
scheme (Crank and Nicolson, 1947) in time and the eighth-order
centered difference in space for the first-order differential equa-
tions 8 and 11. The Crank-Nicolson scheme proves to be adequate
for stability and accuracy with a temporal step size that satisfies the
criterion 11. In these finite-difference schemes, Higdon’s second-
order absorbing boundary condition is applied (Higdon, 1991).

EXAMPLES

Step structure

We use a 3D numerical example to illustrate the simulation of
attenuation effects by using the viscoacoustic wave equation 6.
Carcione et al. (1988b) and Blanch et al. (1995) show that wave
equations with different number of SLSs, including a single SLS
approximation, can reproduce analytical solutions with reasonable
accuracy. In this numerical example, we will benchmark equation 6
against equation 4.
Assuming a constant density ρ ¼ 1 g∕cm3 and a constant veloc-

ity (v ¼ 1500 m∕s), let us consider a heterogeneous Q model
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Figure 1. (a) A 3D heterogeneous Q model. The
seismic attenuation is strong with Q ¼ 20 in the
lower left corner. The snapshots at 1 s are obtained
from (b) the acoustic wave equation, (c) equation 4,
and (d) equation 6. The red color indicates high
amplitudes in these snapshots.
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shown in Figure 1a. TheQmodel is actually a 2.5D step model with
the step in the xy-plane and with no variation in the y-direction. The
attenuation is strong in the lower left corner (Q ¼ 20) whereas
it can be ignored in the rest (Q ¼ 5000). The model size is
3920 × 2800 × 2000 m. An exploding source located at the center
of model surface initializes wave propagation. The source is a
Ricker wavelet with a center frequency of 18 Hz and a time sample
of 4 ms. The Nyquist frequency of the source is therefore 125 Hz.
Because seismic waves are band limited and this example is
designed to simulate the wave propagation in a viscoacoustic
model, it is not particularly significant how the Nyquist frequency
is covered. For the purpose of this example, the Nyquist frequency
of the source is replaced by a maximum frequency fmax ¼ 37.5 Hz,
which is approximately twice the dominant frequency. In this ex-
ample, we use the Oð2; 2Þ finite-difference schemes on centered
grids to solve the acoustic wave equation and equation 6 whereas
we use a Oð2; 2Þ finite-difference scheme on staggered grids to
solve equation 4. According to Dablain (1986), the number of

points needed to cover the Nyquist frequency is eight for the
Oð2; 2Þ schemes. The weights of the second-order accurate fi-
nite-difference operator are 1, −2, and 1. The spatial sampling rates
Δx, Δy, and Δz in the finite-difference scheme are therefore 5 m
according to Δx ¼ vmin∕ðn × fNÞ (Dablain, 1986). For a given
reference frequency f0, the relaxation times can be converted from
Q based on the τ-Q relationships (Carcione, 2001) as

τσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 1

p
− 1

2πf0Q
(14)

and

τϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 1

p
þ 1

2πf0Q
: (15)

In this example, the reference frequencies f0 ¼ 18 Hz and Qmin ¼
20 yield τmax ¼ 1.1051249. Consequently, the time step in the
finite-difference scheme must be equal to or less than 1.183 ms ac-
cording to equation 12.
The 3D snapshots shown in Figure 1b–1d are obtained from the

acoustic wave equation, equations 4 and 6, respectively. As ex-
pected equations 4 and 6 yield similar results because equation 6
is essentially another way to implement equation 4. Compared
to the acoustic snapshot, the viscoacoustic snapshots clearly dem-
onstrate the attenuation effects in the left part of the depth slice, in
the lower left part of the inline section and in the deep part of the
xline section.

A modified Marmousi model

The modified Marmousi model includes a water layer from the
surface down to 500 m (Figure 2a, the water layer is not shown for
simplicity). The model size is 9200 × 3500 m2. For simplicity, den-
sity is set equal to 1 g∕cm3. The Q model used in this example is
shown in Figure 2b. The attenuation in water is essentially zero with
a Q of 5000. Below the water layer, the relationship between Q and
velocity v (inm∕s) isQ ¼ 20 × v∕1500. This relationship results in
strong attenuation characteristic of shallow unconsolidated sedi-
ments near the seafloor (Hamilton, 1980). The strong attenuation
in the shallow sediments makes the model more challenging for
waveform inversion and will serve to demonstrate the thesis of this
paper. We start waveform inversions with an initial velocity model
shown in Figure 2c. In the starting model, the velocity v (in m∕s)
below the water layer is a linear function of depth z (in m)

vðzÞ ¼ 1500þ 0.8333 × ðz − 500Þ: (16)

The application of waveform inversion starting from the poor initial
velocity model is another challenge.
Two towed marine surveys are generated, the first being a purely

acoustic data set and the second a viscoacoustic synthetic data set
using the velocity model (Figure 2a) and the Q model (Figure 2b)
with a flat spectrum source. The source is obtained by applying a
first-order low-pass Butterworth filter with the cutoff frequency of
8.5 Hz to a spike. The relaxation times are obtained from the Q
model at the reference frequency of 6 Hz according to equations 13
and 15. The surveys consist of 125 shots spaced every 100 m and
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Figure 2. (a) A modified Marmousi velocity model that includes a
water layer from surface down to 500 m. The water layer is not
shown. (b) A Q model is obtained from the velocity model as de-
scribed in the text.Q is 5000 in water. (c) The initial velocity model
for waveform inversions.
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located at the free surface. All the shots are recorded with 161 hydro-
phones spaced every 20 m on the free surface. The record length of
the synthetic data is 4.2 s with the time step of 4 ms. The grid spac-
ing of 10 m is chosen in the x- and z-directions, and the time sample
rate is set equal to 0.00178 s for finite-difference solutions.
An acoustic shot gather is shown in Figure 3a and a viscoacoustic

shot gather shown in Figure 3b. Their shots are located at 5100 m in
the inline direction at the water surface. The Q model causes strong
attenuation and dispersion, including amplitude attenuation and
phase shift (Figure 4), in the viscoacoustic shot gathers. The attenu-
ation effects increase with traveltime because seismic waves take
more oscillations along a longer path. Because viscoacoustic events
propagate faster than acoustic events (Carcione et al., 1988a), they
arrive earlier than their corresponding acoustic events.
In this study, a constant Q is approximated with a single SLS.

The quality factor Q is given by (Carcione et al., 1988a)

McðωÞ ¼ MR
1þ iωτϵ
1þ iωτσ

(17)

and

QðωÞ ¼ ReðMcÞ
ImðMcÞ

; (18)

where Mc is the complex bulk modulus; MR is the acoustic or re-
laxed bulk modulus; and MR ¼ ρv2, where v is the acoustic veloc-
ity. Let us consider the approximation of Q ¼ 30 between 0.5 and
20 Hz with a reference frequency of 6 Hz. The approximate values
of Q are lower than 40 between 3 and 13.5 Hz. This indicates that
the attenuation is strong at frequencies close to the reference fre-
quency even for a low-Q value as in this example. Consequently,
the frequency components close to the reference frequency in the
viscoacoustic synthetic data are attenuated (Figure 5a). The ampli-
tude spectrum shown in Figure 5b shows very weak attenuation ef-
fects. This spectrum is obtained from the dashed-line box shown in
Figure 3a. The signals in the dashed-line box come from the seismic
waves that mainly propagate in water and, as stated earlier, the at-
tenuation in water can be ignored, which explains the weak attenu-
ation effects in Figure 5b.

We apply acoustic and viscoacoustic waveform inversions to the
two synthetic data sets with the initial velocity model shown in
Figure 2c. Because the initial velocity model is far from the real
model shown in Figure 2c, multiscale techniques (Bunks et al.,
1995) are used to avoid local-minima and cycle-skipping problems
at all scales.
The first strategy is to group frequencies into four groups of in-

creasing frequency content and perform sequential inversions from
the lower frequency group to the higher frequency group. The wave-
form inversions are performed in the frequency band from 0 to
12 Hz. High-cut filters with 0–0–1–3 Hz, 0–0–3–6 Hz, 0–0–6–
9 Hz, and 0–0–9–12 Hz are applied to the source wavelet and seis-
mic data sets. The schedule of frequencies fully uses the seismic
data up to 9 Hz to fully exploit the nonlinearity of the problem:
For lower frequencies, the method is more tolerant of velocity errors

Figure 4. Seismic traces between 0.5 and 3 s at the offsets of 0.4,
1.6, and 2.8 km. The dashed line is obtained from the acoustic shot
gather shown in Figure 3a, and the solid line from the viscoacoustic
shot gather shown in Figure 3b. The attenuation dispersion includes
amplitude attenuation and phase shift.
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Figure 3. (a) An acoustic shot gather. (b) A vis-
coacoustic shot gather. They are clipped to the
same absolute value. The dashed box shows an
area where weak attenuation is expected, whereas
a lot of attenuation effects are expected in the solid
box as explained in the text.
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because these are less likely to lead to errors of more than a half-
cycle in the inversions. As the inversion proceeds, we move to pro-
gressively higher frequencies.
The second strategy is offset weighting. Inversion benefits from

long-offset and transmission data to reconstruct the large and inter-
mediate wavelengths of a model (Mora, 1987, 1988; Pratt and
Worthington, 1990; Pratt, 1999). The offset weighting is helpful
to separate reflected versus refracted energy and helps to strengthen
the contribution of large-offset data. In this example, we use the
wðhÞ notation to describe the weight w at the offset h, where w
is a linear function between two offsets. The offsets are grouped
into four overlapping offset groups: 0(0)-0(2100)-1(2200)-1
(3200), 0(0)-0(1000)-1(1100)-1(2100)-0(2200)-0(3200), 1(0)-1
(1000)-0(1100)-0(3200), and 1(0)-1(3200). The offset groups are
shown in Figure 6a. The schedule of offset weighting means that
we use the large-offset data first and then move to progressively
shorter offset data, and finally to the full-offset data.
The third strategy is to apply depth-dependent weights to gra-

dients for velocity update (Shipp and Singh, 2002; Wang and
Rao, 2009). The Marmousi model is a complex model with many
thin layers and three faults. Compared to the shallow part with small
velocity anomalies, the structure is more complex in the deeper part
where a reservoir is located below 3000 m and high-velocity
anomalies are located at the depth of 3000 m on the left side
and at the depth of 2700 m on the right side. As a result, the deeper
part of the model has large contributions to the total wavefield re-
sponse. However, errors in shallow overburden invalidate the veloc-
ity update in the deeper part of the velocity model. To minimize this
problem, we apply depth-dependent weights to gradients. In this
paper, we use the (z; w) notation to describe the weight w at the
depth z. The weights are a linear function between two depths.
We use the following depth-dependent weights to develop a
high-resolution velocity field in the deeper part: (0,0)-(490,0)-
(500,1)-(3500,1), (0,0)-(1800,0)-(2000,1)-(3500,1), and (0,0)-
(490,0)-(500,1)-(3500,1). The two sets of depth-dependent weights

Figure 5. Amplitude spectra obtained from (a) the solid-line box and (b) the dashed-line box shown in Figure 3a. The dashed line is obtained
from the acoustic shot gather shown in Figure 3a and the solid one from the viscoacoustic shot gather shown in Figure 3b.

Figure 6. (a) The offset groups used in waveform inversions. The
wðhÞ notation describes the weight w at the offset h. (b) The depth-
dependent weights applied to gradients. The (z; w) notation de-
scribes the weight w at the depth z.
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are shown in Figure 6b. By using the depth-dependent weights, we
update the whole model first, then the deep part, and then the whole
model again.
We perform the inversions within the nested loops with the outer

loop over the frequency groups, the middle loop over the offset
weighting, and the inner loop over the depth-dependent weighting.
For each combination of the strategies, eight iterations are carried
out. As the inversion proceeds, the velocity model improves in the
subsequent inversion. The same source wavelet is used in the inver-
sion because it is used to generate the synthetic data sets. The Q
model shown in Figure 2b is used in the viscoacoustic inversion.
The inverted velocity models are displayed in Figure 7 when the

inversion is performed on the 0–0–1–3 Hz data. The low-frequency
data yield the solutions of the longest scale component of the in-
version problem. These inverted models are used to initialize the
inversion problem with high-frequency components. The compar-
isons of Figure 7a versus Figure 7c and Figure 7b versus Figure 7d
indicate that the choice of acoustic versus viscoacoustic waveform

inversion is not very significant if only very low frequencies
are used.
The final inverted velocity models are displayed in Figure 8.

When the acoustic waveform inversion is applied to the acoustic
data set and the viscoacoustic waveform inversion is applied to
the viscoacoustic data set, high-resolution velocity models shown
in Figure 8a and 8d are produced. They are comparable to the true
velocity model and reveal the geologic structures in details even in
the deep section where the geologic structures are complex. The
reservoir at 3000-m depth is clearly recovered in both inverted
velocity models. We note the sharper resolution of the viscoacoustic
inversion on the viscoacoustic data at all depths. The application of
the acoustic inversion to the viscoacoustic data can still produce a
reasonable inverted velocity model (Figure 8b). However, it lacks
resolution because the high-frequency components are lost in the
viscoacoustic data set and the attenuation effects are not compen-
sated in the acoustic inversion. As a result, the reservoir is missed in
the inverted model. When the viscoacoustic inversion is applied to
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Figure 8. The final inverted velocity models. The
acoustic waveform inversion is applied to the
(a) acoustic and (b) viscoacoustic synthetic data.
The viscoacoustic waveform inversion is applied
to the (c) acoustic and (d) viscoacoustic synthetic
data.
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Figure 7. The inverted velocity models when the
inversion is performed on the 0–0–1–3 Hz data.
The acoustic waveform inversion is applied to
the (a) acoustic and (b) viscoacoustic synthetic
data. The viscoacoustic waveform inversion is ap-
plied to the (c) acoustic and (d) viscoacoustic syn-
thetic data.
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the acoustic data, the inverted model is shown in Figure 8c.
Although the high-frequency components are included in the
acoustic data, the kinematics of their propagation are wrong. This
decreases the resolution with depth and produces incorrect inver-
sion results in the deep section. The reservoir is not recovered either
in the inverted model.
The vertical profiles from the center of the true model and the

inverted models (Figure 7) obtained from the 0–0–1–3 Hz data are
compared in Figure 9a. As discussed before, the attenuation is
strong at frequencies close to the reference frequency (6 Hz) even

for low-Q values, the choice of acoustic versus viscoacoustic
waveform inversion is not very significant for the low-frequency
acoustic and viscoacoustic data. The vertical profiles from the
center of the true model and the inverted models (Figure 8) ob-
tained from the 0–0–9–12 Hz data are compared in Figure 9b.
We note the large excursions of the velocity from the acoustic in-
version on the viscoacoustic data and the great fidelity of the
velocity from the viscoacoustic inversion of viscoacoustic data.
Contrasted to Figure 9a, the high-frequency band emphasizes
the effect of Q.

Figure 9. (a) Vertical profiles from the center of the true model and the inverted models (Figure 7) obtained from the 0–0–1–3 Hz data.
(b) Vertical profiles from the center of the true model and the inverted models (Figure 8) obtained from the 0–0–9–12 Hz data.
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Figure 10. (a) The acoustic shot gather shown in
Figure 3a is filtered to 0–0–9–12 Hz. (b) The vis-
coacoustic shot gather shown in Figure 3b is fil-
tered to 0–0–9–12 Hz.
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The synthetic data shown in Figure 3 are filtered to 0–0–9–12 Hz,
and the filtered data are displayed in Figure 10. The synthetic
data obtained from the final inverted velocity models shown in
Figure 8 and their residuals are displayed in Figures 11 and 12.
The residuals are large when the acoustic inversion is applied to
the viscoacoustic data, and the viscoacoustic inversion is applied
to the acoustic data.
In the numerical example, all waveform inversions start from the

poor initial velocity model (Figure 2c) without the large and inter-
mediate wavelengths of the true velocity model (Figure 2a). The
inverted models obtained from the 0–0–1–3 Hz data provide the
large and intermediate wavelengths and act as the starting models
for the high-frequency data. However, this is unattainable with field
data recording because the low-frequency components are absent or
are dominated by noises.
This numerical example illustrates that seismic attenuation can

have large effects on waveform inversion. The attenuation effects
should be compensated where strong attenuation is present. Choos-
ing the most suitable inversion method for a particular seismic data
set is important to get the most accurate velocity models of the
subsurface.

GOM field data

The 3D ocean-bottom-cable (OBC) field data set was produced
from a deep-water survey in the Green Canyon area of GOM. The
survey has 19,901 shots located at an area of 20 × 8 km2. Each shot
has 239 receivers. The water depth in the survey area is about
1000 m. A debubble filter was designed and applied to the prestack
data set to compress wavelets by suppressing the air-gun bubble
pulse. An f-k filter was applied to the prestack data set to remove
high-amplitude noise spikes. Three-dimensional surface-related
multiple elimination was applied.
We apply acoustic and viscoacoustic waveform inversions to the

data set with receiver gathers. The waveform inversions are carried
out in the frequency band of 2–3–8–9 Hz by using a source wavelet,
which is estimated from the raw direct wave in the seismic data set.
A starting velocity model shown in Figure 13a was obtained from
ray-based tomography to initialize the inversions. Salt bodies are
the main structures below 2200 m. In the inversions, the velocity
model is kept constant in the water column and the salt bodies
are masked so that the velocities of salt are also fixed. A layered
velocity model down to 3000 m is generated from the average
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Figure 11. (a) The acoustic synthetic data ob-
tained from the inverted velocity model shown
in Figure 8a. The synthetic data are filtered to
0–0–9–12 Hz. (b) The residuals between the data
(a) and the data shown in Figure 10a. (c) The
acoustic synthetic data obtained from the inverted
velocity model shown in Figure 8b. The synthetic
data are filtered to 0–0–9–12 Hz. (d) The residuals
between the data (c) and the data shown in
Figure 10b.
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Figure 12. (a) The viscoacoustic synthetic data
obtained from the inverted velocity model shown
in Figure 8c. The synthetic data are filtered to 0–
0–9–12 Hz. (b) The residuals between the data (a)
and the data shown in Figure 10a. (c) The viscoa-
coustic synthetic data obtained from the inverted
velocity model shown in Figure 8d. The synthetic
data are filtered to 0–0–9–12 Hz. (d) The residuals
between the data (c) and the data shown in
Figure 10b.
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Figure 13. (a) Starting velocitymodel. (b) Inverted
Q model. (c) The difference between the inverted
velocity model obtained from acoustic inversion
and the starting velocity model. (d) The difference
between the inverted velocity model obtained
from viscoacoustic inversion and the starting
velocity model.
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velocity at each depth of the starting velocity model. Ray tracing
performed with the layered model indicates that diving energy
turns at the depth of 2500 m and is observed at the offsets greater
than 3000 m at the depth of 1000 m. To update the velocity be-
tween the water bottom and top salt, the seismic data in the offset
range from 3000 to 7000 m are used in the inversions. This offset
weighting is helpful to separate reflected versus refracted energy
and, therefore, let us mainly focus on the diving waves to mitigate
cycle-skipping artifacts in gradients. The cycle-skipping artifacts
can be caused by near-offset reflected energy and far-offset diving
energy (Virieux and Operto, 2009; Prieux et al., 2011). Gardner’s
equation (Gardner et al., 1974) is used to compute density from
velocity for sediment, whereas the density of water is set equal to
1.03 g∕cm3 and the density of salt is set equal to 2.175 g∕cm3

(Bird et al., 2005).
Bai and Yingst (2013) use the forward and adjoint operators

6, 8, 9, and 11 to estimate a τ model by minimizing the objective
function:

JðτÞ ¼ kd0 − αdk22: (19)

The gradient for τ update is

gðxÞ ¼ −2α
X
xs

X
t

�
ρ∇ ·

1

ρ
∇P −

1

τ
r

�
R; (20)

where P ¼ Pðx; t; xsÞ is the predicted wavefield obtained from the
forward modeling operators 6 and 8. The R ¼ Rðx; t; xsÞ is the
wavefield obtained by applying the adjoint operators 9 and 11
on the residuals (d0 − αd) with α ¼ hd; d0i∕kdk2. A Q model is
obtained from the inverted τ model based on equations 14 and 15:

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

τ
þ 1

�
2

− 1

s
: (21)

Given the reference frequency of 6 Hz, we first perform viscoa-
coustic waveform inversion to estimate a Q model starting from a
constant Qð¼ 5000Þ model, using the source wavelet, the starting
velocity model, and the density model mentioned above. In the
waveform inversion, the starting velocity model is fixed. The in-
vertedQmodel is displayed in Figure 13b. The small values ofQð≈
90Þ mean relatively strong attenuation in the area.
Once the inverted Q model is obtained, acoustic and viscoacous-

tic waveform inversions are carried out to update the starting veloc-
ity model. Each waveform inversion performs 18 iterations. The
inverted Q model is now kept fixed in the viscoacoustic inversion.
The difference between the inverted velocity model obtained from
the acoustic inversion and the starting velocity model is displayed in
Figure 13c, whereas the difference between the inverted velocity
model obtained from the viscoacoustic inversion and the starting
velocity model is displayed in Figure 13d. It is noted that both in-
versions introduce an update with the low-wavenumber compo-
nents. The updates mainly come from the refractions by offset-
weighting receiver gathers. The velocity model obtained from
the acoustic inversion is higher than the one obtained from the vis-
coacoustic inversion in the area with strong attenuation.

A receiver gather band-pass filtered of 2–3–8–9 Hz is displayed
in Figure 14a. In Figure 14b, the receiver gather is offset weighted.
In Figure 15, the field data in the box shown in Figure 14b are com-
pared with the synthetic data obtained from the starting and inverted
velocity models. Data-fitting benefits from the inversions as indi-
cated by the ovals in the figure. Subtle difference in the solid ovals
in Figure 15d, and Figure 15f indicates that the data fitting is
slightly better by using the inverted velocity and Q models from
the viscoacoustic inversion than the one by using the inverted veloc-
ity model from the acoustic inversion.
For quality control purposes, acoustic Kirchhoff depth migration

is used for the acoustic case whereas viscoacoustic Kirchhoff depth
migration is used for the viscoacoustic case. The attenuation effects
are compensated in the viscoacoustic Kirchhoff migration. Fig-
ure 16a shows the image obtained from the starting velocity model
without the benefit of incorporating any waveform inversion, indi-
cating that energy is poorly focused in the area. The energy is much
better focused in Figure 16b and 16c, which is obtained from the
inverted models with and without attenuation, respectively. The im-
age resolution is slightly improved by using the models determined
with the viscoacoustic waveform inversion, as indicated in the ovals
in these figures. A lot of events are not flattened at the far offset in
the offset gathers obtained from the Kirchhoff migration with the
starting velocity model (Figure 17a). They are improved by using
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Figure 14. (a) A receiver gather is band-pass filtered of 2–3–8–
9 Hz. (b) The receiver gather in (a) offset weighted between
3000 and 7000 m.
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the inverted velocity model without Q compensation (Figure 17b).
However, some events are slightly overcorrected, as highlighted in
the ovals in the figure. This overcorrection is partially addressed
by using the inverted models obtained with Q compensation
(Figure 17c). The very last strong offset events come from the
top of salt. Because the salt bodies are not updated, the last strong
events are less flat as shown in Figure 17b and 17c. The offset
ranges from 200 to 6000 m in these offset gathers.
It should be noted that we are using an iterative procedure, where

we start with an initial velocity model (albeit a very good model in
this example), from which we obtain a Q model through an inver-
sion step, and then iterate. This procedure is consistent with the dis-
cussion by Tarantola (1988). In the field data set example that we

have shown, only a second velocity inversion was needed after the
Q determination. This is because the starting velocity model was
already very accurate.

CONCLUSIONS

In this paper, we have presented the theory of viscoacoustic
waveform inversion in the time domain for velocity estimation. Vis-
coacoustic wave equations for forward modeling and their adjoint
are derived to compensate for the seismic attenuation in viscoacous-
tic waveform inversion. We solve the equations by stable finite-
difference schemes on centered grids with high-order accuracy to
extrapolate seismic wavefields. Numerical examples demonstrate
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Figure 15. The field data in the box shown in Figure 10b are compared with synthetic data. (a) The synthetic data obtained from the staring
velocity model. (b) The residuals between the field data and the panel (a). (c) The synthetic data obtained from the inverted velocity model from
acoustic inversion. (d) The residuals between the field data and the panel (c). (e) The synthetic data obtained from the inverted velocity model
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reasonable attenuative behaviors and thus indicate that the viscoa-
coustic equations can handle complex Q models.
The quality of waveform inversion depends on the adequacy of

forward modeling and of its adjoint to describe the physics behind
what we observe in nature. The tests presented in this paper indicate
that the choice of the most suitable inversion method is important
for a specific seismic data to produce the highest quality inversion
results. The tests also illustrate that strong seismic attenuation can
have significant effects on waveform inversion. The attenuation ef-
fects should be compensated otherwise they can reduce the resolu-
tion of inversion results or even cause inversion to produce incorrect
results. The tests with the field data set indicate that the inverted

velocity models determined from the acoustic and viscoacoustic in-
versions are helpful to improve images and offset gathers obtained
from migration. Compared to the acoustic inversion, the viscoa-
coustic inversion is a realistic approach for real earth materials be-
cause the attenuation effects are compensated.
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APPENDIX A

DERIVATION OF FORWARD VISCOACOUSTIC
WAVE EQUATION

Here, we show the derivation without the source term. Differen-
tiating equation 4 in time gives

∂2P
∂t2

¼ −
∂
�
κ
�
1þ τe−

t
τσ

�
HðtÞ

�
∂t

� ∇ ·
∂v
∂t

: (A-1)

Substituting equation 5 and the bulk modulus κðxÞ ¼ ρðxÞvðxÞ2
into equation A-1 reads

1

v2
∂2P
∂t2

¼ ∂G
∂t

�
�
ρ∇ ·

�
1

ρ
∇P

��
(A-2)

with

G ¼
�
1þ τe−

t
τσ

�
HðtÞ: (A-3)

The relaxation function G determines the viscous behavior of the
material. Differentiating equation A-3 in time yields

∂G
∂t

¼ ð1þ τÞδðtÞ þ τ

τσ
e−

t
τσHðtÞ; (A-4)

where δðtÞ is the Dirac delta function. Substituting equation A-4
into A-2 results in the second-order differential equation 8 with
the definition of the memory variable r in equation 7.

Differentiating equation 7 in time gives

∂r
∂t

¼ τ

τσ

�
ρ∇ ·

�
1

ρ
∇P

�

−
1

τσ
½e− t

τσHðtÞ� �
�
ρ∇ ·

�
1

ρ
∇P

��	
: (A-5)

Combining equations 7 and A-5 leads to the first-order differential
equation 8.

APPENDIX B

DERIVATION OF ADJOINT OPERATOR

Without the source term the forward modeling operator in equa-
tion 6 reads

1

v2
∂2P
∂t2

− ð1þ τÞρ∇ ·
1

ρ
∇Pþ τ

τσ
e−

t
τσHðtÞ � ρ∇ ·

1

ρ
∇P ¼ 0.

(B-1)

The adjoint T� of an operator T has the property hTx; yi ¼ hx; T�yi.
This property results in



1

v2
∂2P
∂t2

− ð1þ τÞρ∇ ·
1

ρ
∇Pþ τ

τσ
e−

t
τσHðtÞ � ρ∇ ·

1

ρ
∇P;u

�

¼


P;

1

v2
∂2u
∂t2

−∇ ·
1

ρ
∇ð1þ τÞρu

þ∇ ·
1

ρ
∇ρ

�
τ

τσ
e

t
τσHð−tÞ � u

��
: (B-2)

So, the adjoint of forward modeling is the second-order differential
equation 9 with the definition of the memory variable ~r in
equation 10.
Differentiating equation 10 in time reads

∂~r
∂t

¼ τ

τσ
½−Pþ 1

τσ
e

t
τσHð−tÞ � P�: (B-3)

Combining equations 10 and B-3 yields the first-order differential
equation 11.
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