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Tutorial: The kinematics of migration. Part I 
This two-part tutorial is abstracted from the new EAGE publication: ‘An Introduction to Velocity Model Building’ 
 
Ian F. Jones 
Ian.Jones@iongeo.com 
 
Abstract 
Migration is the process that builds an image of the subsurface from recorded seismic data, by (ideally) repositioning this 
data into its ‘true’ geological position in the subsurface. To perform migration, we need to understand and to be able to 
describe, how sound waves propagate in the earth. The propagation of seismic waves can be described by either wave 
theory or ray theory, and the numerical approximations to working with these descriptions can be implemented in various 
transform and data domains. Furthermore, there are two main approaches to performing migration: Time Migration, and 
Depth Migration, both of which can be performed either before stack or after stack. 
 
I’ll briefly discuss the concepts involved in migration, and highlight the major differences between time migration and 
depth migration, so as to give readers some insight into the reasons behind why depth migration is important in providing 
a reliable image of the subsurface. In contemporary industrial processing, both time and depth migration need an 
estimate of the subsurface velocity field in order for the migration process to proceed, but for the more demanding 
process of depth migration, a more accurate velocity model is needed. The discussion here will concentrate on the way 
different wave-based and ray-based migration schemes handle positioning of events (the kinematics), rather than the 
associated amplitudes (the dynamics), and will review some of the approximations made and physical consequences of 
these approximations. 
 
In Part I of this two-part tutorial, I’ll address: the objectives of migration, time versus depth imaging, the migration 
response, waves versus rays, velocity scale-length, domains of application, and the evolution of migration schemes. In 
Part II I discus ray-based techniques, algorithm noise, multi-pathing, and one-way versus two-way propagation. 
 
What migration sets-out to do 
Sound waves that propagate through the earth and reflect off subsurface horizons are the raw data we record at the 
surface. With ray theory or wave theory we hope to describe the motion of these waves so that we can construct a 
subsurface image from them. However, full solution of the elastic wave equation is not something that we usually set out 
to achieve. Instead, from the standpoint of industrial expediency, we make various simplifying assumptions involving a 
progression of solutions ranging from the simpler to the more complex (Bednar, 2005; Pelissier, et al., 2007). Not 
surprisingly, this progression has moved in tandem with the increase in available computer power, and development of 
interactive model update tools for velocity and anisotropy parameter estimation (Jones, et al., 2008).  
 
Figure 1 shows the geometry of a reflector and the signal recorded at the surface from an incident sound wave plotted at 
its CMP location (Chun & Jacewitz, 1981). From Figure 2, it can be noted for the zero-offset raypath shown  that during 
migration, a segment of input recorded surface seismic data (CD) is re-positioned to its (approximate) subsurface position 
(AB): the process results in a shortening of the segment length (AB<CD) and an increase in the reflector segment dip 
(θmig>θin) such that sin θmig = tan θin, for both time and depth migration. So, to reposition a recorded event, we can think of 
migration as swinging the element at location C, up through an arc of radius rA. This process within the migration creates 
what we call the migration operator. For time migration, the operators in 2D are symmetric circular arcs for zero offset 
recordings and symmetric elliptical arcs for other offsets. For depth migration, the operators are more complex, as the 
travel times have to be converted to distances via a spatially variable velocity field (rather than using the simplified locally 
1D vertical velocity function assumed by time migration). Many excellent text books deal with these basic principles - see 
for example, Clarebout, 1976; Yilmaz, 1987; Claerbout, 1992; Bancroft, 1997; Berkhout, 19xx; Fagin, 1999, Robein, 2003, 
Biondi, 2006. 
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The two-way raypath from the surface location A to subsurface 
reflector position B, and then back to surface location C, has total 
travel time tB. Location D is located below the midpoint between A 
and C, and is where the recorded energy sits on our seismic field 
records after reflecting from true reflector position B. 
 
 
 
 
 
 
 

Figure 1 



Migration tutorial: I.F. Jones 2

 

θmig

θin

Lin
Lmig

θmig> θin

Lin > Lmig

tA, rA

A

S

C

BD

tA, rA

Circular arc, 
radius tA

θmig

θin

Lin
Lmig

θmig> θin

Lin > Lmig

tA, rA

A

S

C

BD

tA, rA

Circular arc, 
radius tA

 
 
 
 
 
 
 
 
Time versus depth  
Think of the analogous situation of light bending (refracting) as it passes through an interface between two different 
materials with different refractive indices, say air and water. Sound also bends (changes direction) as it passes through 
an interface (at some angle away from the normal) between two different materials that have different sound-speed. In 
seismic data processing, the process of depth migration is designed to compensate for the effects of this refraction 
(bending of the travel paths) at interfaces or within layers when there is a velocity gradient, so that the image of the 
subsurface appears in its correct (geological) position. Time migration however, ignores lateral velocity change when 
computing the underlying migration operator. Hence, at least locally, all refracting reflector segments appear flat to it. 
 
Time migration only seeks to “move” (migrate) recorded data closer to their true spatial positions, and we accept that time 
migrated positions are only approximate at best (Hubral, 1977; Black & Brzostowski, 1994; Tieman, 1986).  Conversely, 
depth migration does try to create images in their true spatial location when anisotropy and velocity variation are correctly 
accounted for. Figure 3 shows a 2D synthetic model of a deepwater environment with a corrugated sea bed, with constant 
velocity layers. The preSDM result is shown in Figure 4 and the preSTM result in Figure 5 (converted to depth for 
comparison). The failure of time migration to correctly obey Snell’s law results in unacceptable distortion of the deeper flat 
layer. 
 
 

 
 
Interval velocity model used to create and migrate deep water synthetic data  
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The raypath from the surface location S to subsurface reflector position A is of 
travel time tA: this also defines the time to the position C directly below S. 
Location C is where our recorded energy sits on our seismic field records after 
reflecting from true position A. For a medium with constant velocity V, we could 
draw the diagram for length rA, with rA = V.tA/2 

Figure 2 
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Kirchhoff preSDM of deep water synthetic data with correct interval velocity  
Model 
 

 
 
Kirchhoff preSTM of deep water synthetic data (converted to depth) with the  
RMS version of the correct model. The deepest event should be flat. 
 
 
The migration response 
It is instructive to introduce some more terminology here: namely the migration operator and the migration impulse 
response. For example, for a 2D time migration, the basic migration operator for each time sample is a symmetric arc 
which for zero offset source and receiver separation is circular, and for non-zero separation is elliptical. In 3D the 
response would be a hemispherical bowl and an elongated ellipsoid, respectively. If we ran this time migration, say, on a 
zero offset plane with laterally varying velocity, at each CMP location the operator would be a circular arc, but the radius 
of this arc would change for each CMP location, as the arc’s radius is proportional to the velocity at that CMP location. 
The impulse response would be the sum off all such arcs, and what we would see would be the envelope of all such arcs 
which can have an asymmetric shape. So, it is important to note that although the time migration operators are 
individually symmetric, the overall impulse response will not be if the velocity varies laterally. 
 
Alternatively, the process of building the impulse response could be described as a sum along a diffraction trajectory 
which places the result of this sum at the apex. The curvature of this diffraction trajectory would also change shape if the 
velocity varies laterally. In Figure 6 we see a single live input sample on a 2D zero-offset plane at CMP location 200 and 
two-way-time 2s. The output migrated image of this single live sample will be formed by summing along all possible 
hyperbolic diffraction trajectories that fit in this 2D offset plane: in the simplest time migration case the shape of these 
trajectories is determined by the rms velocity to the apex of the diffraction. For example, the trajectory with apex at CMP 
50, would collect and add all samples along this hyperbolic corridor, and place the result at the apex at 800ms two-way 
travel time.  The majority of such trajectories for this particular input data will only add zeroes together: the only live 
contributions resulting from this process will be for hyperbolic diffraction trajectories whose diffraction tails happen to 
intercept the single live sample. When all possible output sums have been computed, the locus of the results constitutes 
the migration impulse response, and would be symmetric for a constant velocity medium (and also for a 1D laterally 
invariant velocity function which changes only vertically), but would be asymmetric for laterally varying velocity. 
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All migration algorithms are implementations of an approximate solution of the wave equation, and one or more of these 
approximations usually have the effect of limiting the maximum dip that can be accurately reconstructed in the output 
image. For example, in a Kirchhoff scheme, we select the maximum dip that the ray tracing will be performed for 
(described further in Part II). If we have signal in the input data emanating from reflectors with steeper dips, they would be 
effectively filtered out of the resulting image by this dip limitation in the ray tracing. The following Figures show 2D zero 
offset impulse responses computed for a constant velocity of 2km/s (hence a time and depth image will appear the same, 
and the response should be semi-circular), with a 50Hz wavelet at 4ms input sampling and a 10m inter-trace distance. On 
the responses, are denoted the 45º and 70º dip angles. Figure 7 is the Kirchhoff result with an explicit dip limit of 70º 
whilst for comparison the 15º finite difference (FD) result is shown in Figure 8 (with the correct semi-circular response 
superimposed in yellow). This latter class of algorithm was common throughout the 1980’s but is no longer used due to its 
assorted artefacts. It is clear for this last algorithm that the equations used to represent the semi-circular wavefronts are 
not very circular, and do not simply end at some requested dip limit, but continue to create an output beyond the useful 
parts of the response. Such FD schemes do not explicitly limit the dip of the operators, but are progressively more in error 
at steeper dips. So in that case, the steeper events may be visible in the output image, but would be systematically 
mispositioned and dispersed. 
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Kirchhoff migration impulse responses with an explicit dip limit of 70º 
 
 

 
Finite difference migration impulse response with a 15º implicit FD approximation 
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 Figure 7

 Figure 8

Cartoon showing the principle of summing along a suite of hyperbolic 
corridors to form the migration output. Any energy captured in a given 
hyperbolic corridor is placed at the vertex of that corridor to constitute its 
output contribution. The thick dashed line shows the locus of all such 
vertices. 
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Classes of migration: differential versus integral techniques or waves versus rays 
There are two categories of theoretical description underpinning migration algorithms (summarized in Table 1), both of 
which are numerical solutions to the wave equation. These two categories are the integral methods (including Kirchhoff 
and beam techniques), and the differential methods (such as finite differencing and phase-shift techniques, which use 
wavefield extrapolation to solve the migration equations (these include reverse time migration (RTM) which despite its 
name is a type of depth migration, and wavefield extrapolation migration (WEM), also referred to by some as being ‘wave 
equation migration’, which is a bit misleading as all the methods attempt to solve the wave equation). Both time and depth 
migration can be performed with either integral (ray) or differential (wavefield extrapolation) techniques. 
 
This description using integral and differential techniques encapsulates the concepts of rays and waves, respectively. As 
sound propagates through the earth, it does so along an expanding wavefront, which would look something like a 
hemispherical bowl that was continuously expanding, with the amplitude at the expanding wavefront in general 
decreasing as it spread-out. As with a ripple spreading-out on the surface of a pond, there will be a characteristic wavelet 
spanning the leading edge of the ripple. For a constant sound-speed medium the wavefront will be an expanding 
hemisphere. When the velocity of sound in the medium is not constant, then the wavefront gets distorted in peculiar ways. 
 
Modelling this process, and backing out its effects during migration, can be done by considering the difference in position 
and amplitude from one depth slice to the next in the earth. The maths of considering the wavefield in this way falls under 
the category of wavefield extrapolation or differential techniques. An alternative description of the expanding wavefront 
would be to consider the normal to the expanding wavefront and to plot (or track) the evolution in time of these normal 
vectors. These vectors are described as ‘rays’ and give an indication of the direction of motion of the wavefront, and also 
the arrival times of the wavefront along the associated ray-path. In their simplest forms, rays do not inherently convey 
information about phase and amplitude behaviour. Hence as a description, they constitute a gross simplification of the 
process of wave propagation. Ray description can tell us how long it takes a wavefront to travel from one point to another, 
and/or the direction the wave moves in. This information is sufficient to perform forward modeling (i.e. to make synthetic 
data) and also to perform a migration. However, it should be emphasised that contemporary ray-based migration and 
modelling schemes also include techniques for sensibly estimating amplitude, by considering the behaviour of 
neighbouring rays as well as the main ‘central’ ray (Cervény, 1981). 
 
Table 1: Integral versus Differential Methods  
Integral or Ray-based Methods Differential, Extrapolation  

or Continuation Methods 
- Kirchhoff, Gaussian beam, & fast (controlled) 
beam are the best known.  
Usually implemented in the time domain, but 
can be in the frequency domain.  
Distinguishing feature is separation of 
calculation of travel times from imaging:  
thus a subset of the image can be computed 
without needing to image the entire volume  

- Finite difference wavefield continuation is the 
best known, in conjunction with ‘phase shift plus 
corrections’.  
Each depth slice of the wavefield is computed 
from the previously computed slice, thus the 
entire image volume needs to be formed.  
Dip response is dependent on the order of the 
expansion used (thus potentially costly)  

Strengths: 
 
- delivers sub-sets of the imaged volume, 
including offsets or angles (thus cost effective 
for iterative model building) 
- good dip response 

Strengths: 
 
- images all arrivals 
- simpler amplitude treatment 
- can be extended to two-way solutions of the   
wave equation (e.g. RTM) 

Weaknesses 
 
- Inherently kinematic (only approximate 
amplitude treatment) 
- Kirchhoff usually only delivers one arrival 
path but beam can handle multi-pathing 
- velocity field coarsely sampled for travel time 
computation, then arrival times interpolated 
back to seismic spacing, which can mis-
represent rugose high velocity contrast 
boundaries (such as top salt) 

Weaknesses 
 
- images whole volume (thus costly) 
- obtaining good dip response is expensive 
- does not readily produce pre-stack data 
- thus difficult to achieve cost-effective iterative 
model building without ‘restrictive’ assumptions 
(eg mono-azimuth) 

(adapted from: Jones & Lambaré, 2003) 
 
Velocity scale length 
Velocity variation can be classified on the basis of scale length of the variation as compared to the wavelength of the 
seismic wavelet. If the velocity scale length is much greater than the seismic wavelength, then ray-based techniques for 
model building (such as conventional tomography) and imaging can resolve the features. If not then this (high frequency) 
ray approach is inappropriate, as diffraction (scattering) phenomena will predominate, and then waveform tomographic 
model building and wavefield continuation (differential) imaging techniques ideally need to be used. Figure 9 shows the 
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situation with a velocity anomaly whose physical dimensions are much larger than the seismic wavelength. In this case, 
describing the propagating wave-front with representative ‘rays’ (normal to the wave-front) is acceptable as Snell’s law 
adequately describes the refractive and reflective behaviour at the interfaces of the anomalous velocity region. 
Conversely, once the velocity anomaly is of similar scale length to the seismic wavelet (as shown in Figure 10), then 
diffraction phenomena dominate, as it is then scattering which governs the behaviour of the wave-front. In this case, 
rather than just considering a ray description of the events, we need to use the wave equation to estimate how the 
waveform will propagate (e.g. Pratt, et al., 1996; Sirgue & Pratt, 2002). 
 
 
 

Velocity anomaly

Seismic wavelength much 
smaller than the anomaly 
we are trying to resolve

The propagating wavefront can 
adequately be described by ray-paths

Velocity anomaly

Seismic wavelength much 
smaller than the anomaly 
we are trying to resolve

The propagating wavefront can 
adequately be described by ray-paths

 
 
 
 
 
 

Small scale-length 
velocity anomaly

Seismic wavelength larger or 
similar to the anomaly we are 
trying to resolve

The velocity feature behaves 
more like a scatterer than a 
simple refracting surface element

Trying to describe the propagation behaviour as 
‘rays’ obeying Snell’s law, is no longer appropriate

Small scale-length 
velocity anomaly

Seismic wavelength larger or 
similar to the anomaly we are 
trying to resolve

The velocity feature behaves 
more like a scatterer than a 
simple refracting surface element

Trying to describe the propagation behaviour as 
‘rays’ obeying Snell’s law, is no longer appropriate

 
 
 
 
 
 
 
Kirchhoff and beam techniques both have both a good dip response and handle lateral velocity variation very well, as 
long as the spatial wavelength of these changes is much longer than the seismic wavelength. However, for lateral velocity 
variation on a length scale similar to the seismic wavelengths, ray techniques are no longer appropriate. In Figures 11, 12 
and 13, we see an interval velocity model and some simple looking relatively flat data, but with a series of small gas 
charged lenses in the overburden (courtesy of ConocoPhillips Norway). The velocity model was constructed by 
constraining high-resolution ray-based tomography with very dense well control (more than 100 wells were available over 
the crestal structure). The result in Figure 11 shows a 3D anisotropic Kirchhoff preSDM, while Figure 12 shows the result 
of a wavefield continuation migration. The latter technique has honoured the small scale high velocity contrast features in 
the model. The gas lenses which are about 200m wide, have a velocity of about 1400m/s in a background velocity of 
about 2000m/s, and hence a ray tracing procedure has difficulty preserving this detail. 
 
 
 
 
 
 
 

 Figure 9

  Figure 10

Resolution scale length - velocity anomaly scale length greater than the 
seismic wave length - ray theory works 

Ray-based methods (Kirchhoff, beam) using the ‘high frequency 
approximation’ begin to fail. Resolution scale length - velocity anomaly 
scale length comparable to the seismic wave length - ray theory fails and 
diffraction (scattering) theory is better for describing the phenomenon. 
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Flat data with gas lenses: velocity model derived using ray-based 
tomography with substantial well constraint. Data courtesy of 
ConocoPhillips Norway 

Flat data with gas lenses: the Kirchhoff ray tracing cannot honour the 
short wavelength velocity anomaly. 

Wavefield extrapolation migration with the same input data and model is 
better able to image the small features 
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Domains of application 
Time and depth migration techniques can be applied in various ‘domains’:  The domain of application is a separate issue 
from the type of description we are using (i.e. waves or rays). The common domains are time-space (t,x,y), frequency-
space (f,x,y), frequency-wavenumber (f,kx,ky), and zero-offset-time and ray-parameter (tau-pxpy). The reason for selecting 
one domain over another is primarily to exploit some property of that domain that will save computation time or reduce a 
class of noise. For example, if we had data with usable signal bandwidth of 5-55Hz, then with an (f,x,y) implementation of 
wavefield extrapolation we can reduce cost by migrating only up to 55Hz, and ignoring all frequencies above this. If the 
same class of algorithm was implemented in the (t,x,y) domain, we could not exploit this cost saving, nor could we readily 
exclude any high frequency noise in the input data during migration. 
 
In addition to the domain of application for the migration, we also have the issue of input data ensemble to consider. The 
algorithm in use (e.g. a wavefield extrapolation in the (f,x,y) domain) can be applied to the input data in different sort 
orders e.g common shot, common receiver, common offset, etc, and there are various reasons why we might want to use 
one sort order over another (e.g. ease of throughput for data access, or adherence to the requirements of some 
algorithmic approximation). 
 
Evolution of wavefield extrapolation migration schemes 
Prior to the early 1990’s the limitations on affordable availability of computer power effectively limited migration to the 
post-stack domain. At that time, a common means of performing both post-stack time and depth migration (postSTM and 
postSDM) of 3D seismic data was via the use of frequency domain implicit finite difference (FD) algorithms, first 
introduced in a geophysical context by Claerbout (1976). To facilitate solution of the 3D wave equation with FD schemes, 
a technique called 'splitting' was invoked, whereby an independent 2D solution was implemented for the in-line (x) and 
cross-line (y) directions. This involved separating a square-root equation (containing the spatial variables x and y) into two 
independent square root terms one for each of the two spatial variables. This splitting, or separation of the x and y 
components in the data, resulted in ‘numerical anisotropy’ - yielding an impulse response which did not possess the 
requisite circular x-y section for a constant velocity medium. (The name arises by analogy with physical anisotropy, which 
results in waves propagating at different velocities in different directions, resulting in a non-spherical wave front). 
 
Each resulting square root term was then approximated by a series expansion, the truncation of which led to an incorrect 
positioning of energy beyond a certain dip in the migrated output. A better dip response can be obtained by using higher-
order expansions in approximating the square root term, but this greatly increases the cost of the migration. Such series 
expansion approximations do not have an inherent dip limiting cut-off for the steeper dips where the approximation is no 
longer valid, but simply misposition energy beyond this limit (Figure 8). Consequently, a form of noise was introduced 
appearing as energy travelling at impossibly high velocities for a given propagation angle (terms which would have given 
rise to a negative term within the square root).  
 
Also, using finite differencing techniques to solve the second-order differential term of the wave equation results in a slight 
mispositioning of energy as a function of frequency, with respect to the sampling grid of the data. This gives rise to a 
phenomenon resembling dispersion, in that different frequencies appear to travel at different speeds. During migration a 
single dipping event will split into a suite of different events each of different frequency content and dip (Diet & Lailly, 
1984). However, the introduction of explicit continuation schemes, free from the FD artefacts, led to steep dip high fidelity 
postSDM algorithms seen routinely in use by the mid 1990’s (Hale, 1991b, Soubaras, 1992). 
 
In addition, migration prior to the late 1990’s was isotropic. However, if attempting to deal with non-elliptic anisotropic 
media, we face an additional problem with FD solutions of the acoustic wave equation (i.e. after dropping the shear terms 
in the elastic wave equation) as anisotropic behaviour is essentially an elastic phenomenon, so is not correctly dealt with 
in an acoustic migration scheme. Hence another class of algorithm noise appears for non-elliptic anisotropy for the FD 
acoustic approximation (Bale, 2007).  
 
For the most part, these FD and explicit techniques fell into abeyance in the mid to late 1990’s as post-stack migration 
was superseded by Kirchhoff pre-stack migration,  and depth migration started to emerge as a serious imaging technique. 
3D pre-stack imaging became computationally feasible due the appearance of efficient first-arrival travel-time solvers for 
depth imaging and more approximate travel time estimators for time imaging. Furthermore, the ability of Kirchhoff (and 
other integral methods) to produce limited subsets of the image and pre-stack migrated gathers made industrial 
application affordable, especially given the fact that we had to apply depth imaging methods iteratively to build velocity 
models. Thereafter, industrial efforts went towards the improvement of Kirchhoff migration, both in terms of amplitudes 
and handling different branches of the arrival times.  
 
In the early 2000’s, as computer costs became less of an issue, we saw a resurgence in one-way WE techniques, but for 
the pre-stack domain (I’ll describe the notion of ‘one-way’ a bit later). Wavefield extrapolation implementations of the one-
way scalar wave equation are relatively simple to write compared to a Kirchhoff scheme, but in principle are more costly; 
the extra cost may be prohibitive if many iterations are needed for construction of the velocity model. With Kirchhoff 
migration, it is routine to output the data for model update sorted by surface offset (resulting in familiar-looking migrated 
gathers, variously referred to as common reflection point (CRP) or common image point (CIG) gathers). For shot domain 
and other wavefield extrapolation techniques, we require various additional approximations to produce gathers for velocity 
analysis, as these schemes do not inherently produce a pre-stack output domain, but rather the zero-offset image only 
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(e.g. Faye and Jeannot, 1986; Sava and Vasconcelos, 2008). This evolution of industrially available migration algorithms 
is summarized in Table 2.  
 
Table 2: time-line for evolution of industrial techniques  
Period in use as 
primary deliverable 

Technique Common domain & type of application 

1975- 1988 2D postSTM 
 

Finite Difference (FD) (x,t) & (x,f) 
Initially with 30º, then 45º and later 60 º dip limits 

1980-1988 2D postSDM FD (x,f) 
Initially 45º and later 60º dip limits 

1985-1995 3D postSTM 
 

FD (x,y,f) 
Initially with 45º and later 60º dip limits 

1990-2001 DMO + 3D zero-offset constant velocity 
preSTM, followed by a de-migration of the 
stack and then 3D postSTM 

Constant velocity phase shift (Stolt) zero offset 
preSTM, and subsequent de-migration, in 
conjunction with FD (x,y,f) postSTM 

1990-1995 2D full-offset preSDM FD focussing analysis interactive (x,f) 
1993-1997 DMO + 3D zero-offset constant velocity 

preSTM, followed by a de-migration of the 
stack and then 3D postSDM 

Constant velocity phase shift (Stolt) zero offset 
preSTM, and subsequent post-stack de-migration, 
in conjunction with FD (x,y,f) postSDM 

1995 - present Full-offset v(x,y,z) 3D preSDM  Kirchhoff (x,y,z) isotropic 
2000-2003 Full-offset v(x,y,t) 3D preSTM Kirchhoff (x,y,t) straight ray 
2002-present Full-offset v(x,y,t) 3D preSTM Kirchhoff (x,y,t) curved and turning ray & 

anisotropic 
2000-present Full-offset v(x,y,z) 3D preSDM Isotropic wavefield extrapolation (WE), either with 

for example: FD, SSFPI, & non-WE beam 
2000 - present Full-offset v(x,y,z) 3D preSDM outputting 

gathers 
TTI Kirchhoff (x,y,z) anisotropic turning ray 
 

2005- 2008 Full-offset v(x,y,z) 3D preSDM outputting 
gathers 

VTI wavefield extrapolation, either with for 
example: FD, SSFPI, and alternatively non-WE 
beam 

2006- present Full-offset v(x,y,z) 3D preSDM VTI two-way wavefield extrapolation using reverse 
time migration, or two-pass one-way extrapolation 

2008- present Full-offset v(x,y,z) 3D preSDM 
outputting gathers 

VTI beam or two-way wavefield extrapolation 
using reverse time migration 

2009- present Full-offset v(x,y,z) 3D preSDM 
outputting gathers 

TTI beam or two-way wavefield extrapolation 
using reverse time migration 

(adapted from Jones et al., 2008) 
 
It should still be kept in-mind however, that all the schemes in use within the industry today are solutions of the acoustic 
wave equation hence none of them deal with mode conversion, transmission and reflection energy partitioning, and they 
also ignore absorption (Q).  
 
Part II 
In the concluding part of this tutorial, the aspects relating to ray based migration, and associated noise will be covered, as 
well as multipathing and two way propagation. 
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