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Summary 

 

We propose a denoise workflow comprising a supervised 

ML (Machine Learning) model applied in the common shot 

domain and a self-supervised ML signal-add back model in 

the common channel domain. The supervised ML-based 

denoise (Brusova et al., 2021) learns from training data 

containing recorded noise and provides robust, high-quality 

results that can successfully tackle various noise types in a 

single pass without requiring complex parameterization.  

However, some signal leakage can occur, producing primary 

damage. We demonstrate a self-supervised signal add-back 

technique based on the blind-trace network (Birnie et al., 

2021) that mitigates the primary damage and produces a 

complete denoise solution.  The technique is applied to 

various vintages of offshore streamer data. The results from 

our novel workflow show significant improvements in 

recovery/denoise of low frequency (<3 Hz) on legacy 

streamer data, which is critical for success in 

deghosting/broadband processing and FWI.  

 

Introduction 

 

Seismic data from offshore marine streamer data can contain 

many types of background noise, including swell noise 

caused by waves and swell on the ocean surface, tug noise 

caused by the cable being jerked by the tow vessel, propeller 

noise from the streamer vessel or other nearby ships, cable 

noise from mechanical vibrations along the cable, etc.   

Traditional denoise techniques have involved multiple 

passes of time-filtering algorithms in multiple domains to try 

randomizing and removing the noise, such as time-frequency 

vector median filtering (Seher and Ortega, 2018).  While 

such approaches can be effective, they typically require 

significant effort to optimize parameters, and a given set of 

parameters only provides acceptable results over a narrow 

range of noise conditions.   

 

Brusova et al. (2021) demonstrated the potential of using 

Convolutional Neural Networks (CNNs) to accurately 

estimate swell noise for streamer data. Additional field noise 

records have been added in this work to increase the 

generalizability to more noise types including linear noise 

such as cable-tug and paravane noise.  

 

Several papers have been written on self-supervised image 

denoising including noise2noise (Lehtinen et al., 2018) 

where input noisy data had additional noise applied and 

noise2void (Krull et al., 2019) where a network was 

designed to recover masked input pixels.  An improvement 

in the noise2void implementation came from Laine et al. 

(2019), who developed a network with a convolutional 

operator shifted to only have a receptive field to one side of 

the output pixel.  By applying the model with shifts applied 

four ways (e.g., up, down, left, and right), they ended with a 

model that had a receptive field that, for a single pass, is 

blind only to the corresponding input pixel, referred to as the 

Blind Spot network (BSN).  This is very efficient and can 

use every pixel in an image for training.  The noise2void 

model works under the assumption that noise signals are 

pixel-wise independent and have a zero mean.  

 

Seismic noise is frequency-limited and therefore rarely 

pixel-wise independent, so the BSN is not applicable. 

However, in the correct domain, noise is often trace-wise 

independent. An example of this is tug noise, which is 

coherent in the common-shot domain but incoherent in the 

common-offset or common-receiver domain.  While this 

blind-trace network (BTN) approach is highly successful at 

attenuating noise, it was observed to have significantly 

higher signal damage than supervised-based approaches that 

estimate noise. 

 

Birnie et al. (2021) implement a blind-trace self-supervised 

denoise flow for seismic data based on an extension of the 

masked base noise2void paper (Krull et al., 2019).  Luiken 

et al. (2023) use a full blind-trace network based on Laine et 

al. (2019), as a component of an inversion-based deblending. 

 

The key idea presented here is to utilize the blind trace 

network to find residual coherent signal in the estimated 

noise data, rather than to estimate the noise directly.  To 

accomplish this, the predicted supervised-ML noise records 

for a sail line are sorted into common-channel domain. The 

blind trace network is next trained on the noise records and 

learns to predict the residual coherent signal (leaked signal).  

Figure 1: Location of data used during model training.  
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The coherent signal is then subtracted from the noise record 

to preserve the signal.  

 

 

ML Denoise 

 

The common-shot ML denoise flow is described in detail in 

Brusova et al. (2021).  Before and after shooting, noise 

records contain recorded ambient noise from the cables.   

The ML denoise model is trained with input and target 

patches in a supervised manner. The input patches are built 

by combining random patches from the measured noise 

records and the processed, cleaned seismic records. The 

target patches (labels) are only patches from the measured 

noise records. The model is a CNN with a UNet-like 

architecture. The only difference between this abstract and 

the original paper is a significant increase in the training data 

(particularly noise records) to improve the robustness and 

diversity of the noise that the network can tackle.  Locations 

of training data can be seen in Figure 1. 

 

  

Figure 2: A common channel gather for a line with low swell noise: (a) input, (b) denoise output, (c) raw noise model, (d) noise 

model after BTN add-back.  This demonstrates the effectiveness of our proposed workflow, which uses the supervised ML method 

to predict the noise model in one domain, and the self-supervised ML method to extract signal leakage from the noise model in 

another domain. 
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Blind Trace Network 

 

Laine et al. (2019) proposed an efficient blind-spot network 

in which they shift the receptive field of the convolutional 

network.  To achieve this, all layers that modify the receptive 

field must be modified (e.g., convolutional, and 

upsampling/downsampling layers) but not those that do not 

modify the receptive field (such as 1x1 convolutions and 

concatenation layers).  

 

To create a convolutional layer with a one-sided receptive 

field, we first pad the input on the side we want to restrict by 

half the kernel size, then perform a conventional 

convolutional layer, after which output has values on the 

opposite side cropped by half the kernel size. In the blind-

spot network, a similar approach of padding and cropping is 

used to modify upsampling and downsampling layers to 

restrict the receptive field. 

 

Rather than have four sub-models with operators acting with 

different receptive fields, Laine et al. (2019) add a rotation 

layer and rotate the input model to only include information 

to one-side of the output pixel; at the end a shift of 1 is 

performed and a series of 1x1 convolutions performed 

before estimating the output trace.  A minor adaption can be 

made for the blind trace network, only using two rotations 

corresponding to receptive fields orthogonal to the time axis.       

Other than modifying the rotation and unrotation layers, the 

model is unchanged.  Except for the above-mentioned 

changes, the model is a 5-layer UNet-like architecture. 

 

Blind Trace Network for Signal Preservation 

 

As stated above, this paper's novel contribution is applying 

the blind-trace network for signal preservation.  The 

supervised ML Denoise flow is first applied in the common-

shot domain. The noise model is then resorted in the 

common-channel domain. This is done to randomize the 

underlying shot-specific noise (in a trace, not pixel, sense) 

while the signal is expected to remain coherent.  As this is a 

self-supervised technique, a project/line-specific model 

could be developed. To facilitate the application to 

production, the ML Denoise model was applied to a set of 

test lines, and these were used to train the blind-trace 

network. This single model was then applied for all lines, 

simplifying the production denoise flow. The model was 

implemented in pyTorch (Paszke et al., 2019).  Random 

cropping and random flip in the trace dimension were 

applied to improve the generalizability of the resulting 

model.  The model's output contains the coherent signal 

energy not wanted as part of the noise model. The output can 

be added to the signal.   

  
  

Figure 3: Octave panels for a shot record with high noise.  From left 

to right panels are: Full bandwidth record, 0-0-2-4 Hz, 0-2-4-8 Hz,  
2-4-8-16 Hz, 4-8-16-32 Hz, 8-16-32-64 Hz, 16-32-64-128 Hz, 32-

64-128-256 Hz.  (a) is input data, (b) data after denoise, (c) ML noise 

model (d) ML noise model with BTN signal removal. 
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Results 

The outlined technique was applied to a large regional  

project combining eight different legacy surveys from 1989 

to 2019.  Conventional denoise methodologies are 

challenging to apply in such a setting due to the variation in 

survey acqusition setup, conditions and resulting variability 

in noise levels requiring significant manual parameter 

optimization.  The older surveys often have worse signal-to-

noise at low frequencies due to shallow tow depths.  Those 

surveys originally appled a low cut filter to discard 

frquencies up to 3-5Hz.  Today, those frequencies are 

important to current techniques such as quality broadband 

imaging and FWI model building.  

Different lines will be used to highlight different aspects of 

the proposed ML flow.  The same flow was applied in all 

cases.  Figure 2 shows a common channel gather windowed 

near the water bottom on a line with low noise.  Figure 2(c) 

shows the result of the supervised ML denoise model.  While 

the noise is identified, a weak imprint of the signal can be 

seen, particularly at the water bottom.  This has no material 

impact on qualitative imaging but is of potential concern for 

quantitative processes such as AVO and, as such, is 

undesirable.  Figure 2(d) shows the result of the add-back 

based on the Blind Trace Network.   

 

Figures 3 and 4 are from a line that has a higher level of swell 

noise. Figure 3 shows octave panels for the first 100 

channels and first 2 seconds as this is the window where 

signal leakage is most apparent.  Octave panels are a key QC 

and highlight a number of interesting features. The primary 

takeaway is that the denoise flow results in clean records for 

all frequency scales. Looking at the noise records it is clear 

that there is some apparent signal leakage into the raw ML 

denoise record that is particularly apparent for near offsets 

(first 20 channels) at the waterbottom (around 0.3s). The 

primary damage is clearest in the 8-16-32-64 Hz and 16-32-

64-128 Hz panels. 

 

Another key observation from Figure 3 is the improvement 

in the 0-2-4-8 Hz panel.  In the input the signal is well below 

the noise level.  The final output shows a significant 

improvement.  To further highlight this capability stacks 

have been generated in this bandwidth.  In Figure 4, the stack 

of the raw data  shows that the coherent energy beneath the 

waterbottom is overwhelmed by noise. The bottom figure 

shows the stack after the combined workflow.  The stack of 

the denoised data reveals coherent events. Marked 

improvements are seen in the top half of the section 

(representing about 5-6 s) .  The ability to effectively remove 

noise in the low frequencies while preserving coherent signal 

provides a strong foundation for other processing-steps, 

particularly deghosting and FWI.    

 

 

Conclusions  

 

A novel workflow combining supervised ML noise 

prediction and self-supervised ML signal addback has been 

shown to be effective as a leakage-free noise removal tool 

on multiple seismic lines. Results have demonstrated the 

efficacy of a generalized common-shot ML denoise model 

with the ability to recover valuable low frequencies on 

different vintages of streamer data. In areas of low noise, 

some signal leakage can be seen. We have demonstrated the 

ability of the self-supervised blind-trace network to identify 

the leaked signal. This combined approach applying two 

different models in two distinct domains leads to 

consistently high-quality results across data with a wide 

range of noise levels. 
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Figure 4: Stacks for 0-2-4-8Hz bandwidth data.  Top stack is using 

raw input, bottom stack is using data after combined ML denoise 
flow. 


