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Summary 

 

Full waveform inversion employing finite differences (FD) 

modeling is a commonly-used tool for deriving high 

resolution velocity models. Sparse Ocean Bottom Node 

(OBN) acquisition leverages this method effectively, 

offering a cost-effective solution in areas of complex 

geology where long to super-long offsets and full azimuth 

sampling are needed for reducing the uncertainty of the 

derived model and image. Most applications of FWI with 

this type of data are in the acoustic limit, but accounting for 

the elasticity of the earth can result in a higher fidelity in 

simulating the real data and hence accelerate convergence. 

However, the FD method poses computational challenges in 

areas with strong inhomogeneity, where using the elastic 

approach is most beneficial. In this work we discuss some of 

the computational challenges for accurately modeling the 

elastic wavefield in presence of strong contrast media. We 

illustrate our findings with results from a super-long offset, 

sparse OBN survey from the Gulf of México, which 

highlight the benefits provided by using the full elastic 

equations versus the acoustic approximation. 

 

Introduction 

 

Acoustic Full Waveform Inversion (FWI) has been the 

preferred method for building accurate velocity models, 

especially for low-frequency and long offset acquisitions.  

FWI inverts for a velocity model which generates synthetic 

data that best matches the field data. The success of this 

method has had an impact on the types of surveys acquired 

in areas with a high geologic complexity. An example of this 

is the optimization of acquisition in the Gulf of México 

(GOM) with sparsely sampled Ocean Bottom Nodes (OBN) 

(eg., Huang et al. 2023). In some cases, the combination of 

a sparse OBN survey with legacy streamer data takes 

advantage of the long to super-long offsets from the OBN 

data for model building and the dense near-offset sampling 

of available legacy streamer data to produce high-quality 

images. Huang et al. (2020) demonstrated the use of acoustic 

FWI with a sparse OBN data from the GOM resulting in a 

higher quality model and image in the subsalt region 

compared with previous results obtained from the available 

streamer data. In that sparse OBN survey, the nominal node 

spacing was 1 km by 1 km and the source spacing was 50 m 

by 100 m in the inline and cross-line directions, respectively. 

The maximum nominal offset was 40 km, necessary for 

resolving the velocity model deeper than 10 km, and the final 

model was obtained for a maximum frequency of 12 Hz.  

This demonstrated the advantages of using such sparse node 

data with ultra-long offset, through a multi-stage approach. 

 

In regions characterized by a strong impedance contrast, 

such as a shallow salt environment, the Earth's elastic 

properties pose challenges for acoustic FWI. Often, acoustic 

FWI yields velocity models with unfocused interfaces, due 

to inaccuracies in acoustic modeling at boundaries (Plessix 

et al., 2021). Even when only inverting the pressure 

wavefield recorded by the hydrophone component, 

performing elastic propagation benefits the inversion 

process due to a more accurate representation of the 

underlying physics. Elastic modeling in complex geologic 

areas can be computationally challenging due to factors such 

as strong contrast interfaces and boundaries, or very low 

shear wave velocities. Various approaches have been 

proposed to accurately model shear waves near the water 

bottom (van Vossen et al. 2002, Macesanu 2020, Singh et al. 

2021). In the case of pressure wave modeling, we find that 

density variations can also have a significant effect. In the 

case of a strong contrast at an interface, the kinematics of the 

pressure wavefield modeled on a staggered grid can exhibit 

an anisotropic effect manifested as a change in velocity in a 

direction perpendicular to the interface. This effect is 

proportional to the finite difference (FD) grid size, thus 

being significant at low frequencies, which are important for 

FWI updates. Two strategies can mitigate this issue: 

adopting a staggered grid definition for the density model or 

employing a modified version of the stress-velocity 

equations. In the following sections, we discuss the 

implementation of elastic FWI and showcase results based 

on a sparse OBN survey conducted in the GOM.  

 

Theory 

 

The elastic wave equations in a stress-velocity formulation 

read 
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These equations are solved numerically by representing the 

dynamic (physical) fields (6 stress tensor components τij and 

3 vector component velocities) and the model fields (the 

stiffness tensor cijkl and density ρ) at discretized locations in 

space. The standard FD approach employed in the 

implementation of elastic equations (Virieux, 1986) uses 
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staggered grids, with the diagonal stresses τii being sampled 

on the reference grid, while the velocity fields and off-

diagonal stresses are sampled on grids shifted by half 

interval with respect to the reference one. 

 

The accuracy for solving equation (1) with the FD method 

relies on the dynamic fields and the model properties being 

relatively smooth on a scale comparable to the grid 

sampling. However, the primary interest for solving the 

elastic equations relates to targeting subsurface geology 

characterized by a high degree of heterogeneity such as the 

water-sea floor contact and sedimentary-salt interfaces. Let 

us consider for example density variations, which are most 

significant near the seafloor. In an acoustic isotropic 

medium, for simplicity, the equation for the pressure (p = - 

τii) can be written as 
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with λ being the bulk modulus and b=1/ρ the buoyancy. In 

this latest form, the right-hand part contains a kinematic term 

(proportional to the square gradient of the field) and a source 

term, proportional to the derivative of the model 

density/buoyancy (model reflectivity). The kinematic term 

implies the local velocity of the P wave is v2 = λ/ρ. In the 

continuous limit, Equations 2 and 3 are the same. Their 

discretized forms, however, may be different. For example, 

in the case of implementation on staggered grids, the 

discretized equation for pressure in Equation 2 becomes  
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where δ+, and δ- are the forward and backward first order 

finite difference operators, respectively. The density field 

(and therefore buoyancy) is evaluated on the staggered grid 

x+ = xi + dxi/2, while the bulk modulus is evaluated on the 

standard grid (xi). Thus, for the staggered grid 

implementation, it can be shown that the kinematic term for 

pressure has the form 
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where δ2 is the second order finite difference operator. Thus, 

depending on how the buoyancy terms are defined on the 

staggered grids, the kinematic term may be locally 

anisotropic. The input for the discrete problem is a buoyancy 

field defined on the main grid (bk), with the values at 

staggered grid locations being evaluated through 

interpolation: bk+dx/2 = (bk + bk+dx)/2. Therefore, the 

numerical directional P wave velocity at point k will be 

dependent on the smoothed buoyancy field  
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Based on this analysis, it appears the propagation will be 

isotropic for a relatively smooth input buoyancy field, 

however in the vicinity of a strong interface the effective 

velocity in the direction perpendicular to the interface will 

be modified; increased on the side with lower buoyancy 

(smoothing increases local buoyance) and decreased on the 

opposite side. 

 

One approach which would partially address this problem 

involves using the input buoyancy defined on the grid 

staggered in the direction corresponding to the largest 

discontinuity. Since the strongest interface for density is the 

water bottom, and this is often close to horizontal, using the 

grid staggered in the z direction would typically be a good 

choice. Then the other quantities on the main grid are 

defined in terms of the physical observables vp, vs, and the 

average of bk+dz/2. If the model is smooth enough in the x and 

y directions, the discretized equations will be kinematically 

accurate for all propagation directions. 

 

Another solution to this problem is to reformulate the elastic 

equation such that reflectivity is separated from kinematics, 

similar to Equation 3. For this purpose, we define an 

effective stiffness tensor 
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with ρ0 being constant density in water. We obtain then the 

following form of the elastic equations 

 
𝜕𝜏𝑖𝑗

𝜕𝑡
 = 𝑐0

𝑖𝑗𝑘𝑙

𝜕𝑣𝑘

𝜕𝑥𝑙

−  𝑐0
𝑖𝑗𝑘𝑙

1

𝜌

𝜕𝜌

𝜕𝑥𝑙

𝑣𝑘   +  𝐼𝑖𝑗(𝑥)         (8) 

 
𝜕𝑣𝑖

𝜕𝑡
 =  

1

𝜌0

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗

    ,                                                                  

 

where the contribution of the variable density ρ appears as a 

reflectivity source term in the updated stress. Taking the time 

derivative of the stress and replacing the velocity terms from 

the second equation shows that systems (1) and (8) remain 

the same for the stress components. The advantage of this 

formulation is that kinematics of the wavefield becomes 

independent of the density ρ. Moreover, an additional benefit 

is that input parameters to the equations are given in terms 

of quantities (reflectivities) which may be more easily 

estimated (or inverted) than density (Whitmore et al., 2020; 

McLeman et al., 2021). 
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For an illustration of the problem described above, we use a 

constant velocity model with vp being 1500 m/s, and 

generate snapshots using both constant and varying density 

(for the varying density model, we use a simple step-like 

function to represent the seafloor interface, with ρ = 1 g/cm3 

in water and ρ = 2 g/cm3 below). To simulate reciprocal 

OBN acquisition, we place the source at the water bottom, 

set at a depth that aligns with a multiple of the grid sampling 

to simplify source insertion. The input signal is a Ricker 

wavelet with a peak frequency of 6 Hz, and the numerical 

computation is done employing a 40 m grid sampling. Figure 

1a shows a sample snapshot computed with constant density 

to serve as a base case, and next to it wavelets extracted from 

the red rectangle in the snapshot (Figures 1b, 1c, 1d), with a 

red wavelet indicating the base case and a green one the 

variable density case. For Figure 1b, the standard 

implementation is used (density specified on the standard 

grid), and a speedup of the down-going wave (the green 

wavelet) can be observed (corresponding to a time shift of 

about 2 ms). The wavelets obtained using density specified 

on a staggered grid and elastic equations with reflectivity 

source terms are plotted in Figures 1c, 1d, and show 

improved kinematic agreement with the constant density 

case.  

 

 

Figure 1 : a) snapshot computed with variable density (wiggles) 

overlaid on snapshot computed with constant density (color). Right 

panels: wavelet comparison for b) density defined on the main grid, 
c) density defined on the staggered grid and d) equations with 

reflectivity source terms. 

 

Field data results 

 

The real data example originates from a sparse node survey 

acquired in the Gulf of Mexico. This survey has a maximum 

nominal offset of 60 km, with a shot separation of 50 m by 

50 m. Dynamic Matching FWI (DM FWI) (Mao et al., 2020) 

is applied to the hydrophone component after denoising such 

as deblending and simple swell noise removal. DM FWI uses 

a weighted local window cross-correlation based objective 

function that maximizes the similarity between the two 

datasets, the field data and a synthetically computed one, to 

estimate the misfit/residual and update the velocity model. 

The first frequency band inverted is below 2.5 Hz. The 

starting model is a smoothed version of a legacy velocity 

model derived from streamer data. The density and shear 

wave velocity models are derived from empirical relations 

based on well data in the GOM and following the bathymetry 

at the water bottom.  

 

Both acoustic and elastic inversion were performed for a 

maximum frequency of 5 Hz, for assessing differences 

introduced by elastic propagation with respect to acoustic at 

relatively low frequencies. Figures 2a and 2b show the 

inverted velocity models from the sparse OBN data overlaid 

on the migrated stacks generated with the denser WAZ shots, 

for the acoustic and elastic inversions, respectively. The 

elastic FWI result shows improved resolution of the salt 

bodies from the better match of the elastic propagation 

implementation, compared to the acoustic case. A depth slice 

comparison of the migrated images also shows clear 

improvements in the sediment-salt boundary when using the 

elastic FWI model (Figure 2c) versus using the acoustic FWI 

model (Figure 2d).   The improved data match for the elastic 

inversion is corroborated by the window averaged zero-lag 

correlation maps between synthetic and field data displayed 

in Figure 3 for the acoustic (a) and elastic (b) cases. Notably, 

the correlation coefficient is higher for the elastic case, 

signifying improved convergence and a better fit for the 

elastic result. The fact that these differences are observed at 

relatively low frequencies points towards convergence gains 

from using elastic propagators when building the long-

wavelength component of the velocity field.  

 

Conclusions 

 

Elastic FWI offers strong benefits for model building in 

areas with high heterogeneity such as shallow salt geobody 

provinces. Elastic FWI requires considering the extra model 

parameters of shear wave velocity and density, as well as an 

accurate synthetic simulation engine. Finite differences 

modeling using density defined on the standard grid can lead 

to kinematic errors in areas with sharp contrast interfaces. 

Defining the density field on a staggered grid reduces errors 

in the propagation of the wavefield. As an alternative, we 

propose a modified form of the elastic equations, where the 

variable density contribution is expressed in terms of 

reflectivity, which also improves kinematic accuracy. 

Inversion results using a sparse OBN survey demonstrate the 

benefit from elastic FWI early in the model building process, 

as the long wavelength components of the velocity are 

sensitive to elastic effects, with a positive impact on the 

derived models and images. 
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Figure 2: Migration stacks and velocity models obtained through acoustic (a) and elastic inversions (b). A depth slice of the image 

volume from acoustic inversion velocity model (c) and elastic inversion model (d). 

 

 

 
 

Figure 3: Cross-correlation map for one node gather, evaluated between field data and modeled synthetic from acoustic inversion 

(a) and elastic inversion (b).  


