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Introduction 
 

In deep water Ocean Bottom Node (OBN) surveys, the use 
of downgoing data post-wavefield separation is a common 
practice due to its illumination capabilities facilitated by 
mirror migration. As the depth of the survey increases, so 
does the discrepancy in illumination between the upgoing 
and downgoing wavefields. Irrespective of the employed 
wavefield separation method, the downgoing wavefield 
consistently harbors a more pronounced presence of free 
surface multiples compared to the upgoing wavefield, 
necessitating the application of multiple attenuation 
techniques. 

 
Many techniques exist for mitigating multiples in OBN 
surveys. Among these methods are convolutional techniques 
such as Model-based Water-layer Demultiple (MWD, Wang 
et al. 2011) and Surface Related Multiple Elimination 
(SRME - Verschuur et al, 1992). While adept at predicting 
complex multiples, these techniques mandate supplementary 
data not readily available within the node itself. MWD, for 
instance, is confined to predicting water-bottom related 
multiples and hinges on precise bathymetry data. 
Conversely, SRME requires additional data from towed 
streamer acquisition due to the complexities associated with 
redatuming from the water bottom to the free surface. 
Despite this, sourcing existing towed streamer data from the 
same area as the OBN survey is usually not an issue. SRME 
predictions exhibit limited bandwidth due to the 
convolutional process's squaring of the wavelet, however, all 
free surface multiples are predicted. Given their 
complementary attributes, MWD and SRME are often both 
employed to predict multiples in deep water OBN surveys, 
followed by simultaneous least squares adaptive subtraction. 

 
Another category of techniques, known as deconvolutional 
methods, exclusively leverages data within the node itself to 
predict multiples, commonly in the Frequency-Kx-Ky 
(FKK) or Tau-Px-Py domains. One of the better known 
techniques that has been used for years in the industry is τ-p 
deconvolutions, feasible for 3D implementation in OBN 
datasets due to the available shot sampling for each node. τ- 
px-py deconvolution operates on the premise of transforming 
x-t domain data into a domain where diverse dips, 
corresponding to different plane waves, are mapped to 
distinct regions where multiple periodicity is better 
organized. Predictive deconvolution then assumes that true 
reflectivity is random and any periodicity manifests as 
organized energy in the autocorrelation, subject to 
attenuation depending on its location relative to the zero-lag. 
This restriction distance, often termed the "gap", correlates 

well with the seabed's depth, with larger gap values ensuring 
a safer process given the non-random nature of the Earth's 
reflectivity. 

 
Theory 

 
The Stolt domain, here referred to as the forward 3D time- 
migrated image utilizing constant water velocity, constitutes 
a lossless transformation for all events surpassing water 
velocity. It is computationally efficient because it uses 
simple operators in the f-kx-ky domain. Predominantly, it 
collapses most primary and multiple energy to near zero 
offset. For a flat Water Bottom (WB), the free surface WB- 
related multiples can be accurately predicted by simply 
offsetting the data by twice the WB travel time at zero offset. 
However, deviations from a flat WB and the existence of 
non-WB free surface multiples complicate the kinematic 
relationship primary-multiple. We propose computing a 
three-dimensional operator F(x', y', t') in the Stolt domain to 
minimize the following cost function: 

J=||D(x’,y’,t’)–F(x’,y’,t’)*D(x’,y’,t’-2*rec_z/wvel)||2 
(1) 

 ̀

with receiver depth rec_z and water velocity wvel, where 
D(x’y’t’) = Stolt[D(x,y,t)] is the input data in the Stolt 
domain and F(x’, y’, z’) is …. An initial estimate of F(x’, y’, 
t’) can greatly help the convergence of this process and it is 
derived from a local estimate of primary reflectivity. Then 
the multiple prediction M becomes: 

 
M(x,y,t)=Stolt-1[F(x’,y’,t’)*D(x’,y’,t’-2*rec_z/wvel)] 

(2) 
 

This multiple model is then directly subtracted in the (x,y,t) 
domain or could be adapted using traditional L2 energy 
minimization techniques, thus avoiding issues of having 
FKK to the data ? 

 

Figure 1: (a)XT, (b)Stolt and (c)TauP domains 
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Figure 1 provides a comparative analysis across three 
distinct domains: x-y-t, Stolt, and TauPxPy. Analogous to 
the XT domain, the TauPxPy domain exhibits a convergence 
of multiples with corresponding primaries in far offsets. In 
essence, this convergence translates to a diminishing 
window between primaries and multiples as the offset 
increases. Within the realm of predictive deconvolution, this 
phenomenon necessitates the use of smaller gaps to forecast 
far offset multiples, thereby rendering deconvolution riskier 
at these offsets. 

 
Conversely, within the Stolt domain, a distinct pattern 
emerges. Here, primary and multiple events appear to 
collapse near zero offset with somewhat consistent 
separation between primaries and multiples., This eliminates 
the need for smaller gaps to predict far offset multiples. 
However, the amalgamation of near and far offset energy in 
this domain introduces complication, increasing the 
complexity of the operator needed to accurately predict the 
multiples. We rely on the inversion process delineated in 
equation (1) to produce the required filter for an accurate 
multiple prediction. The inherent separation between 
primary and multiple events within the Stolt domain serves 
as a mitigating factor, rendering the deconvolution process 
comparatively safe for the primaries. 

 
Example 

We conducted an evaluation of the proposed methodology 
utilizing a dataset from a deep water Ocean Bottom Node 
(OBN) survey in Brazil. We performed wavefield separation 
below the seabed through adaptive PZ summation in the 3D 
curvelet domain, yielding the required downgoing wavefield 
dataset. This approach, characterized by its ability to 
simultaneously perform obliquity correction, shear wave 
denoise, local calibration, and wavefield separation, 
streamlining the data processing into a single efficient step. 
However, the resultant downgoing wavefield exhibits the 
presence of both receiver side ghost and free surface 
multiples. While mirror migration facilitates the utilization 
of the first WB multiple for enhanced shallow illumination 
during imaging, it is necessary to address the higher-order 
free surface multiples. 

 
To illustrate the impact of the deconvolution filter outlined 
in equations (1) and (2), we initially show the resultant 
multiple prediction by setting the filter to a value of 1. This 
configuration corresponds to a prediction exclusively 
accounting for WB related multiples. However, such a 
prediction proves inherently inaccurate due to the implicit 
assumption of a flat WB, evidenced by discrepancies arising 
from variations in the WB reflector dip, particularly evident 
at far offsets. To facilitate a comprehensive comparison, we 
present both the input data and multiple predictions across 

the XT and Stolt domains, juxtaposed with predictions 
generated using the MWD technique for reference. MWD, a 
method adept at incorporating WB variations observed at 
each receiver, employs this information to calculate time 
delays in neighboring traces, thus enhancing the accuracy of 
its predictions. with the MWD method relying on precise 
bathymetry data. 

 

Figure 2: (a)input, (b)shifted input and (c)MWD model. XT 
domain at top, Stolt at bottom 

Subsequently, we refine our multidimensional filter to match 
the shifted version of the input to the multiple, resulting in a 
significantly improved model for both the Stolt and XT 
domains in the full bandwidth. We compare this result with 
the 3D SRME accurately predicts all free surface, contingent 
upon the availability of the auxiliary towed streamer dataset. 
The accuracy of the SRME model is primarily data-driven, 
leveraging auxiliary data to compensate for its inherently 
limited bandwidth arising from the convolution of two band- 
limited signals. Its superiority can be noted in predicting 
complex multiples necessitating a broad aperture for 
prediction, underscoring the advantages afforded by the 
utilization of auxiliary data to refine these predictions. In 
contrast, Stolt deconvolution, akin to its deconvolution 
counterparts, draws solely from the node being processed, 
thereby constraining its capacity to model intricate multiple 
features. The multidimensional filter derived from the 
optimization process accomodates kinematic adjustments in 
far offsets, while incorporating reflectivity information 
crucial for predicting non-WB multiples. The 
multidimensional shift operator can be understood as the 
reflectivity, where a flat WB manifests as a layer of single 
time delay spikes. Figure 3 compares input, Stolt 
deconvolution and SRME models in XT and Stolt domains. 
Figure 4 shows pre-stack depth migration stack comparisons 
before and after Stolt deconvolution, and the noise removed. 
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Figure 3: (a)input, (b)SRME model, (c)Stolt deconvolution 

model. XT domain at top, Stolt at bottom 
 

Figure 4: (a)Input PSDM stack, (b)PSDM stack after Stolt 
deconvolution model, (c) Difference 

 
 

Conclusions 

In the context of deep water environments characterized by 
substantial separation between primary reflections and 
multiples, Stolt deconvolution emerges as a swift and 
efficient technique for mitigating multiples from Ocean 
Bottom Node (OBN) downgoing wavefields. Leveraging 
shot carpet sampling, this three-dimensional data domain 
facilitates enhanced focus and segregation between 
multiples and primaries, thereby augmenting the safety and 
efficacy of the deconvolution process, with respect to 
primary reflections. 
Notably, the predictive capability of this method 
encompasses the full bandwidth spectrum, rendering it adept 
at accurately forecasting all free surface multiples. This 
proficiency is attributed to the intricate nature of the inverted 
filter, which navigates the complexities inherent in the 
seismic data to yield precise predictions across the entire 
frequency range. 


