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Summary 
 
In marine ocean bottom node (OBN) processing, removing 
the effects of water velocity variation and correcting for 
node positions and clock-drifts reduce statics in the data. 
Clock-drift for ocean-bottom nodes is usually modeled by 
two terms, a linear and a quadratic term.  
 
A global approach to invert for water velocity, node 
positions and clock-drift encounters further complication 
due to the two-term clock-drift. The unstable inversion of 
clock-drift compromises the quality of inversion for water 
velocity and node position. To avoid such instability, we 
illustrate a strategy that helps to minimize the leakage from 
clock-drift inversion.  
 
Introduction  
 
In OBN processing, removing the effects of water velocity, 
and correcting for node positions (x, y, z) and clock-drifts 
removes jitters in the data. Removing such jitters is 
beneficial in obtaining a quality image. This process 
becomes even more crucial for 4D processing as correcting 
the differences in water velocity, node position and clock-
drift will improve the 4D signal to noise ratio.  
 
Each receiver node has 5 unknown components, 3 related to 
node positions and 2 related to clock-drift. The number of 
water velocity variations can be chosen to be the total 
number of shots in the whole survey (one unknown per shot) 
or as the number of shot-lines (one unknown per shot-line) 
or any other way to partition them, such as by time period 
(Doherty & Hays 2012). Therefore, the huge number of 
components that have coupling between them makes it a 
very challenging inversion problem. 
 
There are a few ways to invert for these components. Some 
methods opt for inverting in a certain domain for a subset of 
these components while holding the others fixed, followed 
by changing the sort order and inverting for the rest of the 
components that were previously held fixed. This is repeated 
several times. Such methods are “local” in nature. A global 
approach inverts for all of these components concurrently. 
Our work follows the latter approach. 
 
The clock-drift is usually modeled as a linear combination 
of two terms, which are linear and quadratic (Olofsson & 
Woje, 2010). In recent acquisition, the total amount of clock-
drift within the duration of the survey is available. This 
information can be used as a constraint.  
 

However, even with this constraint, the inversion could 
produce linear and quadratic terms of different signs, which 
are unreasonably large and yet satisfy the constraint. There 
are also cases where the quadratic term can be larger than the 
linear term or have opposite signs. Hence introducing 
fictitious constraints to force the quadratic term to be small 
or keep them same sign is not fully realistic and will prevent 
the true solution from being reached in those situations. 
 
Here we present a method to stabilize the inversion to obtain 
clock-drift within reasonable accuracy using the total drift 
information as a constraint. 
 
Method 
 
The global inversion approach is based on direct arrival 
energy as in (Doherty & Hays 2012). We present here the 
equation used to model the travel-time of direct arrival: 
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Here 𝜏௜௝  is the direct arrival that follows ray-path from 

source 𝑖 (𝑠௜) at time 𝑇௜ and to receiver 𝑗 (𝑟௜). 𝑇௝
଴ and 𝑇௝

௙ are 

respectively the times when clock is synchronized before 
and after deployment. The clock-drift terms in (1) are 
normalized as in (2). The normalization makes it very 
convenient to describe a total drift constraint. The coefficient 
of the linear term is 𝑏௝ , which for simplicity we refer to as 
linear term for the rest of this paper and the coefficient of 
quadratic term, 𝑎௝  as the aging term. The aging term 
definition is different than what is commonly used (Olofsson 
& Woje, 2010; Doherty & Hays 2012) but is related. 
 
Let 𝑚 denote the vector containing the water velocity model 
change, all shot positions, all receiver positions and 
coefficients of the clock-drift. Then the global inversion in 
this case refers to seeking a least-square solution 𝑚 such that  

min
௠
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and satisfying constraints of the total drift, 𝑑௝: 
𝑎௝ + 𝑏௝ = 𝑑௝   ∀ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑗 (4) 

 
This problem is inherently nonlinear and in order to obtain 
an accurate solution, we have chosen to deal with 
nonlinearity instead of solving a linearized version of the 
least-squares problem. There are many nonlinear algorithms 
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available and we chose the constrained Levenberg-
Marquardt (LM) method to tackle this problem. The 
unconstrained Levenberg-Marquardt algorithm can be found 
in [Levenberg (1944) and Marquardt (1963)]. In brief, the 
algorithm a mix of Gauss-Newton and nonlinear gradient 
descent but more robust than Gauss-Newton and faster 
convergence rate than nonlinear gradient descent.  
 
We give a brief outline of the Augmented Lagrangian 
Algorithm (ALA) using LM here (Kochenderfer & Wheeler, 
2019). A constrained minimization problem  

min
௠
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can be transformed to an augmented Lagrangian version  
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Start with 𝑧 =  0 and 𝜇 = 1 and initial solution 𝑚଴.  
Loop from 𝑘 = 0 𝑡𝑜 𝑁 𝑜𝑟 ‖𝑔(𝑚௞)‖ < 𝜀: 

1. Use LM to find a minimizer, 𝑚௞ାଵ to (5) with starting 
solution 𝑚௞ 

2. Update multiplier: 𝑧௞ାଵ = 𝑧௞ + 2𝜇௞𝑔(𝑚௞ାଵ) 
3. Penalty parameter update: 

𝜇௞ାଵ = ൜
𝜇௞     𝑖𝑓 ‖𝑔(𝑚௞ାଵ)‖ < 0.25‖𝑔(𝑚௞)‖
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If we just use the above ALA directly, it’s likely that we will 
obtain linear and aging terms that have opposite signs after 
the first iteration. This could be a poor starting point for 
second iteration. As iterations increase, the two terms grow 
to have large absolute values but with opposite signs that still 
sum to the total drift. Hence, a better approach is to limit the 
amount of aging in the early iterations and to remove this 
restriction later. With this approach, we prevent the 
aforementioned issue and obtain a better first iteration 
solution. The LM, being a second-order algorithm, can still 
recover the aging term that was suppressed in earlier 
iterations.  
 
In terms of algorithm: we start by using an additional 
constraint on the aging term to force it to be small in an 
absolute sense. As the iteration of LM increases, this 
constraint is weakened gradually. The weakened constraint 
is carried forward in the next iteration of ALA. In later 
iterations of LM (and therefore ALA), this additional 
constraint will be weakened to a negligible level. 
 
We demonstrate that even in cases where the absolute value 
of the aging term is larger than absolute value of linear term, 
this strategy is still able to solve for both terms accurately. 
 
Synthetic Example 
 
In this simulation, we have used 523 nodes with a grid of 
300 m by 300 m arranged in a staggered manner. Shot 

spacing is 50 m by 50 m for 60988 shots. Node position 
errors are randomly generated to be between -2 m to +2 m 
for horizontal components and -5 m to 5 m for the vertical 
component. Water velocity changes are between -30 m/s and 
30 m/s. The linear drift coefficient is to be +/- 3 ms and that 
for aging to be +/- 0.1 ms. The Hood function is used as the 
background water velocity. No source error is introduced 
and the water bottom is set at 2 km depth. One node is 
intentionally made to have an aging term of 20 ms and linear 
term of 0.092 ms. We used data with up to 3 km offsets for 
inversion. 
 
As we can see in the example below, our approach has 
managed to invert accurately for all the unknowns including 
the outlier clock-drift. Figure 1b shows that for the circled 
node without using the proposed method, the modelled first 
break deviates from the picked first break by more than  
0.2 ms. This can be compared to Figure 1c which has error 
of less than 0.02 ms. 
 

 

a)     

b)  

c)   

Figure 1: Difference between picked first break and modelled first 
break; the node circled in blue has an anomalous aging term. a) 
Initial model. b) Final model without proposed method. c) Final 
model with proposed method. Scale for a) ranges between -40 ms 
(red) to 40 ms (blue) and scale for b) and c) ranges between -0.1 ms 
to 0.1 ms 
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Figure 3 compares histograms of both linear and aging terms 
of both methods. Our proposed method has a higher peak 
and smaller standard deviation (Table 2) for both terms, 
though both peak locations are about same (-0.04 ms). 
 

 
 
 
 
 
 

Field Example 
 
We show a field data example from the Amendment Phase 
2 survey which is located in central GoM, across Ewing 
Bank, Green Canyon, Mississippi Canyon and Atwater 
Valley. Node spacing is 1200 m with about 2700 nodes that 
cover 3800 sq-km. Shot spacing is 50 x 100m, dual boat, 
triple source blended shooting. The water bottom ranges 
from 200 m to 1400 m. Average maximum offset is about  
60 km. 
 
Due to the varying water bottom, we use maximum offset 
ranging from 500 m to 3 km where we can reliably pick the 
first break.  
 
We compare here two tests. The first test inverts for node 
position and water velocity while the second test inverts for 
the above and clock-drift. We use linear move-out (LMO) as 
a QC to evaluate the quality of the solution. 
 
Figure 4 shows the LMO QC before and after correction of 
inverted node positions, water velocity variation and clock-
drift. The biggest effect is due to water velocity variation. 
The clock-drift effect in this example is subtle but is flatter 
with clock-drift. Figure 5 shows a zoomed in section of 
Figure 4.  
 
Conclusions 
 
Our method yields stable inversion of clock-drift without 
jeopardizing inversion stability for node positions and water 
velocity variation. In the absence of total drift constraints, 
the same strategy can still be used to obtain reasonable linear 
and aging terms. Despite using a nonlinear optimization 
algorithm, there are still small leakages between the different 
water velocity, node position and clock-drift. Those small 
leakages could be a result of approximation used in the 
model.  
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Table 2: Standard Deviation between methods 

 

a)   b)  
 

c)   d)  

Figure 3: Histograms showing the difference between the inverted 
and true solutions: (a), (c) without proposed strategy (b), (d) with 
proposed strategy. (a) and (b) are for the linear term. (c) and (d) are 
for the aging term. Note that in both linear and aging terms, the 
proposed solution has a higher peak and smaller deviation. 
Horizontal axis is from - 0.1 ms to 0.1 ms. Although none are 
completely centered at zero but the median errors are less than 0.05 
ms.Vertical axis is from 0 to 500 thousand. 
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a)   

b)  c)  

Figure 4:  LMO QC of a) Before correction b) After correction for node position and water velocity variation but no clock-drift c) After correction 
including clock-drift using proposed method. The effect of the clock-drift is small here compared to that of the velocity for th  node on the left but 
more noticable with naked eyes for the node on the right. 

 

 
a)                                                                    b) 

Figure 5:  Zoomed in section of of Figures 4b and 4c for middle gathers. a) Without clock-drift b) With clock-drift 
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