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Summary 

 

In marine ocean bottom node (OBN) processing, removing 

the effects of water velocity variation and correcting for 

node positions and clock-drifts reduce statics in the data. 

Clock-drift for ocean-bottom nodes is usually modeled by 

two terms, a linear and a quadratic term.  

 

A global approach to invert for water velocity, node 

positions and clock-drift encounters further complication 

due to the two-term clock-drift. The unstable inversion of 

clock-drift compromises the quality of inversion for water 

velocity and node position. To avoid such instability, we 

illustrate a strategy that helps to minimize the leakage from 

clock-drift inversion.  

 

Introduction  

 

In OBN processing, removing the effects of water velocity, 

and correcting for node positions (x, y, z) and clock-drifts 

removes jitters in the data. Removing such jitters is 

beneficial in obtaining a quality image. This process 

becomes even more crucial for 4D processing as correcting 

the differences in water velocity, node position and clock-

drift will improve the 4D signal to noise ratio.  

 

Each receiver node has 5 unknown components, 3 related to 

node positions and 2 related to clock-drift. The number of 

water velocity variations can be chosen to be the total 

number of shots in the whole survey (one unknown per shot) 

or as the number of shot-lines (one unknown per shot-line) 

or any other way to partition them, such as by time period 

(Doherty & Hays 2012). Therefore, the huge number of 

components that have coupling between them makes it a 

very challenging inversion problem. 

 

There are a few ways to invert for these components. Some 

methods opt for inverting in a certain domain for a subset of 

these components while holding the others fixed, followed 

by changing the sort order and inverting for the rest of the 

components that were previously held fixed. This is repeated 

several times. Such methods are “local” in nature. A global 

approach inverts for all of these components concurrently. 

Our work follows the latter approach. 

 

The clock-drift is usually modeled as a linear combination 

of two terms, which are linear and quadratic (Olofsson & 

Woje, 2010). In recent acquisition, the total amount of clock-

drift within the duration of the survey is available. This 

information can be used as a constraint.  

 

However, even with this constraint, the inversion could 

produce linear and quadratic terms of different signs, which 

are unreasonably large and yet satisfy the constraint. There 

are also cases where the quadratic term can be larger than the 

linear term or have opposite signs. Hence introducing 

fictitious constraints to force the quadratic term to be small 

or keep them same sign is not fully realistic and will prevent 

the true solution from being reached in those situations. 

 

Here we present a method to stabilize the inversion to obtain 

clock-drift within reasonable accuracy using the total drift 

information as a constraint. 

 

Method 

 

The global inversion approach is based on direct arrival 

energy as in (Doherty & Hays 2012). We present here the 

equation used to model the travel-time of direct arrival: 

 

𝜏𝑖𝑗 = ∫
𝑑𝑆

𝑣(𝑧, 𝑇𝑖)

𝒓𝑗

𝒔𝑖

+ 𝑏𝑗𝑇𝑁,𝑖,𝑗 + 𝑎𝑗(𝑇𝑖,𝑗)
2
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where 

  𝑇𝑖,𝑗 =  (
𝑇𝑖 − 𝑇𝑗

0

𝑇𝑗
𝑓

− 𝑇𝑗
0

) ∈ [0,1] (2) 

 

Here 𝜏𝑖𝑗  is the direct arrival that follows ray-path from 

source 𝑖 (𝑠𝑖) at time 𝑇𝑖 and to receiver 𝑗 (𝑟𝑖). 𝑇𝑗
0 and 𝑇𝑗

𝑓
 are 

respectively the times when clock is synchronized before 

and after deployment. The clock-drift terms in (1) are 

normalized as in (2). The normalization makes it very 

convenient to describe a total drift constraint. The coefficient 

of the linear term is 𝑏𝑗 , which for simplicity we refer to as 

linear term for the rest of this paper and the coefficient of 

quadratic term, 𝑎𝑗  as the aging term. The aging term 

definition is different than what is commonly used (Olofsson 

& Woje, 2010; Doherty & Hays 2012) but is related. 

 

Let 𝑚 denote the vector containing the water velocity model 

change, all shot positions, all receiver positions and 

coefficients of the clock-drift. Then the global inversion in 

this case refers to seeking a least-square solution 𝑚 such that  

min
𝑚

‖𝐹𝐵𝑝𝑖𝑐𝑘 − 𝜏(𝑚)‖
2

 (3) 

and satisfying constraints of the total drift, 𝑑𝑗: 

𝑎𝑗 + 𝑏𝑗 = 𝑑𝑗   ∀ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑗 (4) 

 

This problem is inherently nonlinear and in order to obtain 

an accurate solution, we have chosen to deal with 

nonlinearity instead of solving a linearized version of the 

least-squares problem. There are many nonlinear algorithms 
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available and we chose the constrained Levenberg-

Marquardt (LM) method to tackle this problem. The 

unconstrained Levenberg-Marquardt algorithm can be found 

in [Levenberg (1944) and Marquardt (1963)]. In brief, the 

algorithm a mix of Gauss-Newton and nonlinear gradient 

descent but more robust than Gauss-Newton and faster 

convergence rate than nonlinear gradient descent.  

 

We give a brief outline of the Augmented Lagrangian 

Algorithm (ALA) using LM here (Kochenderfer & Wheeler, 

2019). A constrained minimization problem  

min
𝑚

‖𝑓(𝑚)‖2  subject to 𝑔(𝑚) = 0 

can be transformed to an augmented Lagrangian version  

min
𝑚

‖𝑓(𝑚)‖2 + 𝜇 ‖𝑔(𝑚) +
𝑧

2𝜇
‖

2

 (5) 

 

Start with 𝑧 =  0 and 𝜇 = 1 and initial solution 𝑚0.  

Loop from 𝑘 = 0 𝑡𝑜 𝑁 𝑜𝑟 ‖𝑔(𝑚𝑘)‖ < 𝜀: 
1. Use LM to find a minimizer, 𝑚𝑘+1 to (5) with starting 

solution 𝑚𝑘 

2. Update multiplier: 𝑧𝑘+1 = 𝑧𝑘 + 2𝜇𝑘𝑔(𝑚𝑘+1) 

3. Penalty parameter update: 

𝜇𝑘+1 = {
𝜇𝑘     𝑖𝑓 ‖𝑔(𝑚𝑘+1)‖ < 0.25‖𝑔(𝑚𝑘)‖

2𝜇𝑘                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

If we just use the above ALA directly, it’s likely that we will 

obtain linear and aging terms that have opposite signs after 

the first iteration. This could be a poor starting point for 

second iteration. As iterations increase, the two terms grow 

to have large absolute values but with opposite signs that still 

sum to the total drift. Hence, a better approach is to limit the 

amount of aging in the early iterations and to remove this 

restriction later. With this approach, we prevent the 

aforementioned issue and obtain a better first iteration 

solution. The LM, being a second-order algorithm, can still 

recover the aging term that was suppressed in earlier 

iterations.  

 

In terms of algorithm: we start by using an additional 

constraint on the aging term to force it to be small in an 

absolute sense. As the iteration of LM increases, this 

constraint is weakened gradually. The weakened constraint 

is carried forward in the next iteration of ALA. In later 

iterations of LM (and therefore ALA), this additional 

constraint will be weakened to a negligible level. 

 

We demonstrate that even in cases where the absolute value 

of the aging term is larger than absolute value of linear term, 

this strategy is still able to solve for both terms accurately. 

 

Synthetic Example 

 

In this simulation, we have used 523 nodes with a grid of 

300 m by 300 m arranged in a staggered manner. Shot 

spacing is 50 m by 50 m for 60988 shots. Node position 

errors are randomly generated to be between -2 m to +2 m 

for horizontal components and -5 m to 5 m for the vertical 

component. Water velocity changes are between -30 m/s and 

30 m/s. The linear drift coefficient is to be +/- 3 ms and that 

for aging to be +/- 0.1 ms. The Hood function is used as the 

background water velocity. No source error is introduced 

and the water bottom is set at 2 km depth. One node is 

intentionally made to have an aging term of 20 ms and linear 

term of 0.092 ms. We used data with up to 3 km offsets for 

inversion. 

 

As we can see in the example below, our approach has 

managed to invert accurately for all the unknowns including 

the outlier clock-drift. Figure 1b shows that for the circled 

node without using the proposed method, the modelled first 

break deviates from the picked first break by more than  

0.2 ms. This can be compared to Figure 1c which has error 

of less than 0.02 ms. 

 

 

a)     

b)  

c)   

Figure 1: Difference between picked first break and modelled first 

break; the node circled in blue has an anomalous aging term. a) 
Initial model. b) Final model without proposed method. c) Final 

model with proposed method. Scale for a) ranges between -40 ms 

(red) to 40 ms (blue) and scale for b) and c) ranges between -0.1 ms 

to 0.1 ms 
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Figure 3 compares histograms of both linear and aging terms 

of both methods. Our proposed method has a higher peak 

and smaller standard deviation (Table 2) for both terms, 

though both peak locations are about same (-0.04 ms). 

 

 

 

 

 

 

 

Field Example 

 

We show a field data example from the Amendment Phase 

2 survey which is located in central GoM, across Ewing 

Bank, Green Canyon, Mississippi Canyon and Atwater 

Valley. Node spacing is 1200 m with about 2700 nodes that 

cover 3800 sq-km. Shot spacing is 50 x 100m, dual boat, 

triple source blended shooting. The water bottom ranges 

from 200 m to 1400 m. Average maximum offset is about  

60 km. 

 

Due to the varying water bottom, we use maximum offset 

ranging from 500 m to 3 km where we can reliably pick the 

first break.  

 

We compare here two tests. The first test inverts for node 

position and water velocity while the second test inverts for 

the above and clock-drift. We use linear move-out (LMO) as 

a QC to evaluate the quality of the solution. 

 

Figure 4 shows the LMO QC before and after correction of 

inverted node positions, water velocity variation and clock-

drift. The biggest effect is due to water velocity variation. 

The clock-drift effect in this example is subtle but is flatter 

with clock-drift. Figure 5 shows a zoomed in section of 

Figure 4.  

 

Conclusions 

 

Our method yields stable inversion of clock-drift without 

jeopardizing inversion stability for node positions and water 

velocity variation. In the absence of total drift constraints, 

the same strategy can still be used to obtain reasonable linear 

and aging terms. Despite using a nonlinear optimization 

algorithm, there are still small leakages between the different 

water velocity, node position and clock-drift. Those small 

leakages could be a result of approximation used in the 

model.  
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Table 2: Standard Deviation between methods 

 

a)   b)  

 

c)   d)  

Figure 3: Histograms showing the difference between the inverted 
and true solutions: (a), (c) without proposed strategy (b), (d) with 

proposed strategy. (a) and (b) are for the linear term. (c) and (d) are 

for the aging term. Note that in both linear and aging terms, the 
proposed solution has a higher peak and smaller deviation. 

Horizontal axis is from - 0.1 ms to 0.1 ms. Although none are 

completely centered at zero but the median errors are less than 0.05 

ms.Vertical axis is from 0 to 500 thousand. 
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a)   

b)  c)  

Figure 4:  LMO QC of a) Before correction b) After correction for node position and water velocity variation but no clock-drift c) After correction 

including clock-drift using proposed method. The effect of the clock-drift is small here compared to that of the velocity for th  node on the left but 

more noticable with naked eyes for the node on the right. 

 

 
a)                                                                    b) 

Figure 5:  Zoomed in section of of Figures 4b and 4c for middle gathers. a) Without clock-drift b) With clock-drift 


