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SUMMARY

This paper proposes an improvement in the implementation of
the Fourier Finite Difference (FFD) method for the one-way
wave equation. Errors associated with FFD can be magnified
in media with strong lateral variations in velocity. To reduce
the magnitude of these errors, the reference velocity at each
depth can be replaced by a velocity function which is a smooth
version of the exact model. A phase-shift plus interpolation
(PSPI) step is employed to compute the phase shift to this in-
termediate velocity. To illustrate the accuracy of the method,
several migration examples are shown.

INTRODUCTION

High frequency, high resolution seismic images are often re-
quired in many geophysical applications. For example, site
survey for a shallow section of the earth model needs an im-
age of more than 100 hz, where, in many cases, the struc-
tures are relatively simple with mostly flatish stratigraphy. In
such cases, the one way wave equation based imaging algo-
rithms are preferred because it is relatively more efficient com-
pared to the two way wave equation based reverse time migra-
tion (RTM). In addition, surface multiples in marine environ-
ment have been identified complementary to primary reflec-
tion for imaging especially for shallow targets. However, sup-
pressing crosstalk between unassociated order of reflections
has been one of the challenges in the joint migration of pri-
maries and surface multiples. Imaging using one-way wave
equation based methods can generate less crosstalk.

There are many approaches for implementing one way wave
equation based migration by downward continuation, from the
phase-shift plus interpolation method (Gazdag, 1984) to im-
plicit finite differences based methods (Ristow and Ruhl, 1997).
These methods involve two steps: first performs the downward
continuation to some constant reference velocity, and the sec-
ond step adds corrections which account for lateral variation
in media properties. The first step is performed in Fourier do-
main, and the result is exact; the second step is implemented
in the spatial domain, and is where errors are introduced in the
result. Generally speaking, we might expect that the magni-
tude of the errors is dependent of the difference between the
reference velocity and the actual velocity of the media.

The PSPI method is expected to work well when velocity of the
media is relatively smooth laterally; it also enjoys the advan-
tage that one can use multiple reference velocities, and there-
fore the errors associated with the method can be made smaller
(at some additional compute costs). However, it is challenging
to implement PSPI in anisotropic media. The finite difference
approach, in conjunction with four way splitting and optimiza-
tion of the coefficients for the finite difference equations, is
quite accurate even when velocities change fast, and it can

easily account for anisotropy. For these reasons, FFD meth-
ods are preffered in current WEM algorithms. However, there
are still some residual errors in standard FFD implementations,
and these errors tend to be magnified when there is large lateral
contrast in the velocity of the media.

In order to reduce the errors associated with the FFD method,
we propose a mixed approach, consisting of a PSPI transfor-
mation to an intermediate, smooth reference velocity, followed
by a FD correction from this reference velocity to the exact
velocity. The intermediate model is isotropic, and by choosing
it smooth enough, the PSPI step can be made accurate. The
anisotropy in the media is fully dealt with by FD. Compared
with other approaches of improving the accuracy of FFD, which
may require additional FD transformations (Biondi, 2002), or
higher order operators (Shan, 2007, Valenciano et al., 2009),
the method proposed here has the advantage of being easy
to implement and cost-effective, since the PSPI step is quite
cheap in comparation with the FD solver.

THEORY

The WEM method is based on the downward continuation
equation

u(ω,z+dz) = u(ω,z)eikzdz . (1)

In an homogenous media, this equation is implemented exactly
in the wavenumber domain, with kz given by the applicable
dispersion relation as a function of ω and kx,ky; for example,
in isotropic media

kz =
ω

vp

√
1−

k2
x + k2

y

(ω/vp)2 . (2)

The challenge appears when lateral variations in media proper-
ties are present; in this case, the vertical wavenumber is usually
split into 3 parts:

kzdz ≃ k0
z +ω

(
1

vz(x)
− 1

v0

)
+∆kz . (3)

The first term in the above equation (the phase shift) is again
implemented in frequency-wavenumber domain, using a con-
stant reference velocity v0 (which is typically chosen to be the
minimum velocity value at depth z). The second term (split-
step) is applied in the frequency-space domain, and its purpose
is to correct the phase for waves propagating vertically. (Here
vz is the vertical phase velocity, which is different than vp for a
TTI medium). The last term is an angle dependent correction
for downward-propagating waves. In the Optimized Fourier
Finite Differences method, this term is approximated using a
Padé polynomial of low order, and subsequently converted into
a cascading set of implicit finite difference equations which are
solved by means of tridiagonal solvers.
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From the above equation, it follows that the phase correction
due to the FD term is

∆φ = ∆kzdz = (kz − k0
z −ω(sz − s0))dz = (sωdz)P , (4)

where s is the (vertical) slowness s = 1/v. There are several
steps involved in evaluating the FD correction:

1. approximate the operator P by a sum of (second order) Padé
polynomials:

P ≃
∑

j

a j k̃2
j + c j k̃ j

1−b j k̃2
j −d j k̃ j

. (5)

In order to insure good accuracy along all azimuths, the sum is
usually performed over 4 directions : x, y and the two diago-
nals; k̃ j are the scaled wave numbers along the corresponding
j axis: k̃ j = vpk j/ω.

2. Approximate the (complex) exponential of the phase shift
by a fraction:

ei∆φ ≃ 1+ i∆φ/2
1− i∆φ/2

. (6)

3. Inverse Fourier transform the the k j terms, which become
differential operators ∂/∂x j. These in turns are evaluated through
finite difference operators

k̃ j → − i
vp

ω

∂

∂x j
→ − i

sωdx j
∆x j , (7)

with ∆x j the FD operator.
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Figure 1: Scaled phase term P as a function of azimuthal angle,
at different values for r=v/v0. The solid lines are the exact
values obtained from the dispersion relation, while the dashed
lines are the least square fit using Padé polynomials with 4 way
splitting.

Most discussion in the literature concentrates on the first term:
the Padé approximation for the phase shift in Eq. (5). The
coefficients a,b, . . . are usually estimated by a least squares fit
to the exact function P, whose value depends on the direction
of waves (encoded in the kx,ky variables), the properties of
the medium (vp,ε,δ , . . .) as well as the value of the reference
velocity v0. Typically the resulting approximation is accurate
at small and medium angles, but accuracy is degraded as the

angle between the direction of propagation and the vertical in-
creases. For illustration, we show in Figure 1 the value of the
function P as well as the Padé approximation to it, for an angle
θ = 50◦ as a function of the azimuth angle of the propagation
direction. The medium is a TTI one with ε = 0.2,δ = 0.05;
the axis of symmetry is specified by polar and azimuth angles
θa = 30◦,ϕa = 0. We note the errors are generally larger in
the direction of the TI axis of symmetry (ϕ = 0) as well as in
directions in-between the 4 axes used for spitting. Also, the
values of the function, as well as the errors, increase with the
ratio of the velocity to the reference velocity r = v/v0.

PSPI step

The FFD method with optimized Padé coefficients provides
usually a good solution for the one way wave equation in TTI
media. However, there are some errors in the method. Some of
these are due to approximations inherent in the 4-way splitting
approach to estimating the quantity P (these depend on the az-
imuthal angle ϕ), others are due to the low order of the Padé
polynomials (and will vary with the polar angle θ ). Generally
the errors are larger at large polar angles, but their magnitude
also increases with the difference between the reference ve-
locity v0 and the actual medium velocity v. In areas where
velocity varies laterally (for example, near sharp dips in the
water bottom, or zones with gas clouds where the local veloc-
ity is low), the errors in a standard inplementation of the FFD
method may become significant.

This gives the motivation to improve the accuracy in case of
large velocity variations (vp ≫ v0). We propose a method con-
sisting of 1) propagating the wavefield using a smoothed back-
ground velocity and 2) using a FD operator to compensate for
the difference between the true velocity and the background
one, which is generally much smaller than vp − v0.

For the first step we propose to use the phase-shift plus interpo-
lation method (PSPI). This is one of the early methods used for
downward continuation; its strength lies in its simplicity and
ease of implementation. We follow the procedure proposed by
Gazdag, (1984). The method relies on interpolating between
two phases computed at two constant velocities v1 and v2

φ1,2 =
ωdz
v1,2

√
1−

(
v1,2 kr

ω

)2

− 1

 , (8)

with kr the radial wave number, to obtain the phase at an inter-
mediate velocity v(x) :

φa(v) = aφ1 +(1−a)φ2 . (9)

We note the vertical phase shift ωdz/v is subtracted from the
phases φ so that for downward-propagating waves (kr = 0) the
phases are zero. Moreover, at small angles, the phases are
proportional to the velocity φ ∼ v, therefore standard linear
weighting a = a0 = (v2 − v)/(v2 − v1) is a natural choice for
the interpolation formula. However, it is possible to obtain
a better fit over a larger angles range by a least square mini-
mization of the difference between the exact phase at φ(v) and
the interpolated phase φa(v) over some chosen range of kr (we
chose k̃r(v2) = v2kr/ω < 0.95).
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Figure 2: Error in interpolation of the phase φ = φa(v)−φ(v).
The dashed line corresponds to least square value for a, while
the dotted line corresponds to linear interpolation a0. The top
and bottom lines are differences for the reference velocities
∆φ = φ(vi)−φ(v).

Figure 2 shows the effect of the least square fit on the accuracy
of the phase interpolation (9). The ratio for the velocity val-
ues picked for display are v2/v1 = 1.5, v/v1 = 1.25. A weight
value a= 0.55 is obtained from the least square fit; for compar-
ison, the interpolated phase with the linear weighting a0 = 0.5
is also shown. One can see that least square optimization sig-
nificanly improves the match over a larger angles range. An
estimation of the optimized weight a is given by the formula

a = a0(1+(1−a0)(−0.1+0.2v2/v1)) . (10)

FD details

The FD part is applied following the PSPI step; formally

eikzdz ≃ eik′zdz ei
[

ω

(
1

vz(x)
− 1

vsm(z)

)
+∆k′z

]
dz

, (11)

where k′z is the wavenumber for the PSPI velocity vsm(z). The
first exponential on the right hand side is evaluated using PSPI,
and the second using FD. A Padé expansion using four inde-
pendent terms (Tang et al. 2019) is used for approximating the
angle dependent ∆k′z term. Since v(x)−vsm(x)< v(x)−v0, the
magnitude of this term is less than that of original ∆kz in Eq.
(3), and the errors in the computation of the FD term will be
smaller. Note that, for the purpose of efficiency, in our pro-
posed method in anisotropic media, PSPI is applied using an
isotropic model only, the anisotropic impact for both VTI and
TTI cases is taken into account in the FD step.

Another source of errors in the FD step is due to replacing
the spatial derivative ∂/∂x j with a finite difference operator.
For simplicity and efficiency in solving the resulting banded
diagonal system, one typically uses a second order difference
operator

∂

∂x
u →

u j+1 −u j−1

2dx
∂ 2

∂x2 u →
u j+1 −2u j +u j−1

dx2 , (12)

which has significant dispersion if the grid sampling dx is of
order 2 points per wavelength. One solution to this problem is
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Figure 3: Impulse response in a smoothly laterally varying ve-
locity model (a) using the FFD method and (b) using PSPI +
FD.

to replace the exact k̃ wavenumber variables in Eq. (5) by the
“effective” wavenumber as measured by the applying the finite
difference operator

k̃ j =
k j

ωs
→ k̃e

j =
2

ωsdx j
sin

(
k jdx j

2

)
. (13)

One could then recompute the coefficients a j,b j, . . . by per-
forming a least squares match with these variables. However,
as the results will depend on scale factors h j =ωsdx j , this may
not be feasible in practice; usually the Padé coefficients are
precomputed and saved to/read from disk, and this approach
would significantly increase the size of the coefficient tables.
Instead, using the Taylor expansion of the Padé polynomial,
we found the following corrections in leading order:

a j → a j +(c2
j/a j)h2

j/24 b j → b j +h2
j/12 (14)

c j → c j d j → d j − (c j/a j)h2
j/24 .

A stable and accurate implementation is obtained by applying
the correction just to the the coefficients b j; the corrections
due to the linear terms (proportional to the coefficients c j) are
numerically small.

EXAMPLES

We show first an impulse response computed in a smooothly
varying isotropic medium. The velocity changes linearly from
v2 = 4 Km/s at x = 2 Km to v1 = 2 Km/s at x = 6 Km (the
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Figure 4: Impulse response in a 3d TTI model, along the axis
of symmetry ; (a) using the FFD method and (b) using PSPI
+ FD method. The circles show areas where the accuracy has
improved.

source location is at x = 4 Km). The top plot (Figure 3a)
shows the impulse response computed with FFD; the overlay
curve represents the maximum amplitude location computed
with a 2 way propagator. One can note the errors in traveltime
are larger on the left side of the image, where the velocity is
larger. Adding a PSPI step, with a PSPI velocity at 95% of true
velocity, leads to the result in Figure 3b. The large angle errors
have been significantly reduced.

The next example shown in Figure 4 is for a homogenous TTI
model, with vp = 4 km/s and same anisotropic parameters used
for Figure 1. We use a reference velocity of v0 = 2 Km/s,
introduced at a location outside image range. The top image
(Figure 4a) is obtained using the FFD method only. The slice
shown is along the TI axis of symmetry (x direction), where
errors tend to be largest. By comparison with the RTM result
(the overlayed orange line) we see there is good agreement
except for angles of propagation close to the horizontal. Figure
4b shows the result with PSPI + FD. The background velocity
used is vsm = 3.6 km/s, and the two velocities used as reference
for the PSPI interpolation are v1 = 3.3 Km/s and v2 = 4 km/s.
The results shows an improvement in accuracy, as well as a
reduction of noise, for large angle propagation.

We finally show a migration of an OBN line from the Utsira
survey in the North Sea. The velocity model used for the area
is based on long offset diving wave and reflection FWI (Jansen
et al., 2021). The underlying model is TTI, with the tilt of the
axis of symmetry reaching 60◦ near the high dip structures.
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Figure 5: Migrated stack of OBN data a) WEM image b) RTM
image

Figure 5a shows a 80 Hz WEM migration using the method
proposed in this paper; the bottom image Figure 5b is the result
generated with a 50 Hz RTM. The RTM result shows that the
events on the WEM section are accurately positioned.

CONCLUSIONS

We present a method of improving the accuracy of one-way
wave equation solutions in media with large lateral velocity
variations. The standard FFD method, while highly accurate in
most scenarios, still has some residual errors. These errors are
magnified when the difference between the constant reference
velocity (minimum velocity in an area) and the local velocity is
large. We propose using PSPI with a smoothly varying model
to replace the constant reference velocity based phase shift.
As the PSPI velocity is closer in value to the local velocity, the
errors inherent in the following FD corrections are reduced.
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