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ABSTRACT

Model building for tilted transversely isotropic media has
commonly been performed by a single parameter tomogra-
phy that updates the velocity in the symmetry direction,
while the orientation of the symmetry axis and Thomsen
parameters ε and δ are typically estimated from the migra-
tion stack and well data. Unfortunately, well data are often
not available. In addition, when they are available, their
lateral sampling is typically very sparse and their vertical
sampling usually spans only a limited range of depths. In
order to obtain spatially varying anisotropic models, with or
without well data, we developed a multiparameter joint
tomographic approach that simultaneously inverts for the
velocity in the symmetry axis direction, ε and δ. We derived
a set of reflection tomography equations for slowness in the
symmetry axis direction and Thomsen parameters ε and δ. In
order to address the nonuniqueness of the tomography, we
developed a regularization strategy that uses an independent
regularization operator and regularization factor for each in-
dividual anisotropy parameter. Synthetic tests found that
ambiguity exists between the anisotropy parameters and that
velocity has a better resolution than ε and δ. They also con-
firmed that joint tomography provides a better data fit than
single parameter tomography. The field example was used to
test a way to incorporate the sonic data in the model building
process and limit the tomographic updates on certain aniso-
tropy parameters by adjusting the regularization.

INTRODUCTION

In many areas throughout the world, accurate imaging in
depth requires an anisotropic representation of earth parameters
(Alkhalifah and Larner, 1994; Bear et al., 2005; Bowling et al.,
2009; and Schleicher et al., 2010). In many cases, the anisotropic

effects on recorded data can be adequately explained by hexagonal
elastic symmetry. This type of anisotropy is referred to as tilted
transverse isotropy, or TTI, and is characterized by three anisotropy
parameters, the velocity in the symmetry axis direction, and
Thomsen parameters ε and δ, along with the orientation of the sym-
metry axis (Thomsen, 1986). When the symmetry axis is vertical,
the resulting anisotropy is referred to as vertical transverse isotropy,
or VTI.
A number of approaches have been suggested in order to esti-

mate these anisotropy parameters. Tsvakin and Thomsen (1995),
Alkhalifah and Tsvankin (1995), and Grechka and Tsvankin
(1998) analyze NMO moveout and determine an “effective η,”
which is a parameter defined by ε and δ, and NMO velocity in order
to improve images in the time domain. The resulting velocity and η
values can then be converted to interval velocity and η values versus
depth by using an extended Dix formula.
In recent years, several approaches to direct estimation of aniso-

tropy parameters in the depth domain have been developed. One
category of those approaches consists of several steps that solve
for each anisotropy parameter separately, using the surface seismic
data with or without the well information. Bear et al. (2005) sepa-
rately estimate anisotropy parameters for VTI media by using
information from surface seismic, check-shot, and sonic data. The
procedure starts at the well locations. First the vertical velocity is
determined by matching modeled traveltimes to observed vertical
check-shot or sonic data. The anisotropic parameter δ is then
adjusted to flatten the near- to mid-offsets of the migrated seismic
gathers at the well locations. The parameter η is finally picked to
remove the remaining moveouts at far offsets. Parameters δ and η
can be further adjusted if offset check-shot data are available. A 3D
interpolation is then used to create anisotropic models for imaging.
Woodward et al. (2008) apply a multistep approach, in which an
isotropic P velocity is first obtained by standard grid tomography
and then scaled to tie the well. The Thomsen parameters ε and δ are
estimated by interactive 1D forward modeling to flatten gathers at
the well. The 1D δ function then is extended horizontally as a con-
stant away from the well while the ε function is extended to be con-
sistent with the laterally varying η field derived from the time
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processing. Koren et al. (2008) develop a local tomography method
that estimates δ from short-offset events and ε from long-offset data.
Another popular category is single parameter tomography.

Estimates are somehow made for ε and δ at well locations and
are interpolated over the entire model volume to provide final ε and
δ models, with the velocity then being updated iteratively, just as in
isotropic tomography. Schleicher et al. (2010) describe a TTI model
building method that includes calibrating seismic depths to well
depths to obtain δ and ε, estimation of the symmetry axis of the
anisotropy, and iterative depth migration and tomography to update
the velocity in the symmetry axis direction. Huang et al. (2007)
propose a joint inversion of ε and δ at the well location where
the vertical velocity is obtained from calibration with check-shot
data. Then the 1D ε and δ functions are hung from the water bottom
to generate 3D volumes. The 3D ε and δ volumes are fixed there-
after, and single parameter tomographic updates are estimated for
the vertical velocity. This approach is also applied by Bowling
et al. (2009) on wide azimuth data. Bakulin et al. (2010a, 2010b)
develop a local approach that inverts for anisotropic parameters by
using surface seismic and check-shot data and a horizon-guided in-
terpolation in order to generate 3D anisotropy parameter volumes.
Several studies have also been conducted on the joint estimation

of anisotropy parameters from seismic data. Cai et al. (2009)
employ a focusing analysis for estimating anisotropy parameters in
both time and depth domains. Zhou et al. (2003) propose a 3D tomo
graphy that simultaneously inverts for anisotropy parameters. The
tomography equations are derived for the velocity in the symmetry
direction, ε, and δ under the assumption of weak anisotropy. A si-
milar study also is done by Jiang et al. (2009) for 2D TTI media.
In this article, we present a multiparameter joint tomography

method for TTI model building. Our work is motivated by the
observation that well information is only sparsely available and
is thus incapable of providing models with high lateral resolution.
In frontier areas, there may not be any well data available at all. We
also believe that a simultaneous inversion for several parameters has
the potential to yield a better data fit than single parameter tomo-
graphy or multistep schemes. Seismic reflection tomography is an
underdetermined inversion problem. To constrain such an inversion,
Tikhonov and Arsenin (1977) introduce regularization by adding a
term in the minimization objective function to give preference to a
particular solution with desirable properties. A differentiation
(roughening) operator is typically used in the regularization term.
Harlan (1995) reparameterizes it into another form by introducing a
smoothing operator. The multiparameter tomography is even more
underdetermined because we have to invert for more parameters.
Bakulin et al. (2010a) show that even 1D inversion for TTI param-
eters at the well location using both surface seismic and well data
is nonunique. Moreover, each anisotropy parameter may have a
different spatial variation. To address these issues, we develop a
regularization scheme that accommodates independent spatial var-
iations for the anisotropy parameters and gives users some leverage
to control the back-projection of the tomography.

THEORY

Tomography equations

The phase velocity for seismic P waves in anisotropic media is a
complex function of the anisotropy parameters discussed earlier
and the velocity for shear waves (Thomsen 1986, Tsvankin, 2001).
Alkhalifah (1998) and Tsvankin (2001) show that the influence of

the shear-wave velocity on the P wave velocity is practically neg-
ligible for all anisotropic media. By setting the shear velocity to
zero, the P wave phase velocity can be simplified to

VðVp0; θ; ε; δÞ

¼ Vp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.5þ ε sin2 θ þ 0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2ε sin2 θÞ2 − 8ðε − δÞsin2 θ cos2 θ

qr
; (1)

where Vp0 is the phase velocity along the symmetry axis; θ is the
angle between the slowness vector and the symmetry axis; and ε and
δ are Thomsen parameters.
The traveltime in a finite model cell is the group slowness multi-

plied by the travel distance. Because the phase velocity is the pro-
jection of the group velocity (Tsavnkin, 2001), the traveltime can be
expressed as

t ¼ gl ¼ sl cos ϕ; (2)

where g is the group slowness; l is the distance propagated; s is
the phase slowness; and ϕ is the angle between the phase slowness
vector and the group slowness vector. By applying the first order
Taylor expansion, the traveltime changes due to changes in the
model, in the context of linear tomography, can be expressed
approximately as

Δt ¼ ∂t
∂sp0

Δsp0 þ
∂t
∂ε

Δεþ ∂t
∂δ

Δδ

¼
�

∂s
∂sp0

Δsp0 þ
∂s
∂ε

Δεþ ∂s
∂δ

Δδ
�
l cos ϕ; (3)

where sp0 is the slowness along the symmetry axis. Although the
traveltime change is a function of the orientation of the symmetry
axis too, we omit it in equation 2 for the sake of simplicity. Under
some circumstances, the orientation of the symmetry axis can be
approximated by setting its direction to be normal to the structure.
This is accomplished by scanning the dips of the sediment bedding
and then orienting the symmetry axes orthogonal to the bedding.
The special TTI medium with such symmetry axis orientation is
referred to as the Structurally Conformable TTI (STI) medium.
Audebert et al. (2006) show that STI dips can be adequately deter-
mined by means of VTI elliptic, or even isotropic migrations.
From equation 1, we can derive the derivatives of the slowness

∂s
∂sp0

¼ r; (4)

∂s
∂ε

¼ −0.5sp0r3½1þ ρð1þ 2ε sin2 θ − 2 cos2 θÞ�sin2 θ; (5)

∂s
∂δ

¼ −sp0r3ρ sin2 θ cos2 θ; (6)

r ¼
�
0.5þ ε sin2 θ þ 0.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2ε sin2 θÞ2 − 8ðε − δÞsin2 θ cos2 θ

q �
−1∕2

;

(7)
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ρ ¼ 1∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2ε sin2 θÞ2 − 8ðε − σÞsin2 θ cos2 θ

q
: (8)

A similar set of formulas can be found in Jiang et al. (2009) and
Zhou et al. (2003) for weak anisotropic media. For consistency in
the dimensions of parameters, it is preferred to invert for Δsp0,
sp0Δϵ, and sp0Δδ and then deriveΔε andΔδ, resulting in an updated
model for Vp0, ε, and δ.

Ray tracing and equation setup

All traveltime derivatives with respect to slowness, ε and δ are
calculated through TTI ray tracing. To do that, the common reflec-
tion points and their dips are automatically picked from the initial
migration stack while the corresponding depth residual moveouts
are derived from the migration gathers (Jiao et al., 2009). Specular
ray pairs are traced from the picked common reflection points
through the anisotropic model to all source and receiver locations
at the surface. As described in Zhou et al. (2003), a special numer-
ical solver is employed to find the reflection angle according to
Snell’s law. All time derivatives in equation 3 are calculated during
ray tracing along the raypaths for each specular ray pair. The tra-
veltime change due to the reflector shift (Zhou et al., 2003) is a
function of the phase velocities of the incident ray and reflected
ray, the angle of incidence and the angle of reflection. Because
we only measure residuals in the depth direction, the z component
of the slowness vector ∂t

∂z (Koren et al., 2008) at the common reflec-
tion point is used to convert the corresponding depth residual to the
time residual Δt in equation 3. The true depth residual moveout
corresponding to a specular ray pair consists of the residual, with
respect to the current depth of the common image point, plus the
unknown difference between the true depth and the current depth of
the common image point. Because this unknown difference exists in
all equations that are set up at a common reflection point, it can be
eliminated by subtracting one equation, usually corresponding to
the near offset, from all others (Zhou, et al., 2008; Kosloff,
et al., 1997; Koren et al., 2008).
Thus, we set up the tomography system as

Ax ¼ b (9)

where x is a vector of parameter perturbations Δsp0, sp0Δϵ, and
sp0Δδ; matrix A contains their coefficients in equation 3; and b
is the data vector that contains the traveltime residuals. If we set
the slowness derivatives with respect to ε and δ to zeros, the system
degenerates to single parameter tomography. Similarly, it can be
tailored to invert for two of the three parameters only.

Regularization

Matrix A in equation 9 is sparse and nonsymmetric. Its least
square solution can be found by solving the following system:

ATAx ¼ ATb; (10)

where T represents the transpose of a matrix. Matrix ATA is square,
symmetric and positive definite, and the system of equations 10 can
be solved using linear solvers, such as the conjugate gradient meth-
od. Normally, it is an ill-posed system, and there is not a definite
solution solely on the basis of fitting the data. A regularization

method is introduced by Tikhonov and Arsenin (1977) and varia-
tions to it have been developed, among them regularization with
steering filters (Clapp et al., 2004), anisotropic regularization (Zhou
et al., 2008), and spatially variant Gaussian smoothing regulariza-
tion (Zhou et al., 2009). Some people also refer to regularization as
model styling or shaping filters. By adding regularization to the sys-
tem, we have an additional goal to fit the data with model charac-
teristics that we desire.
The anisotropy parameters may have independent spatial varia-

tions. For example, it is often assumed that ε and δ fields are much
smoother than the velocity. Thus, it is natural to apply independent
regularization (or model styling) to each individual parameter. Let
us define three vectors xs, xε, and xδ for slowness, ε, and δ updates:

xs ¼ ½ðΔsp0Þ1; ðΔsp0Þ2...; ðΔsp0Þn; 0; : : : ; 0; 0 : : : 0�T; (11)

xε ¼ ½0; : : : ; 0; sp0Δε1; sp0Δε2; : : : ; sp0Δεn; 0; : : : ; 0�T; (12)

xδ ¼ ½0; : : : ; 0; 0; : : : ; 0; sp0Δδ1; sp0Δδ2; : : : ; sp0Δδn; �T; (13)

where

x ¼ xs þ xε þ xδ: (14)

The objective function is defined as

φ ¼ kb − Axk2 þ τskRsxsk2 þ τεkRεxεk2 þ τδkRδxδk2;
(15)

where Rs, Rε, and Rδ are regularization operators for the anisotropy
parameters xs, xε and, xδ, respectively, and τs, τε and, τδ are corre-
sponding regularization factors. We try to minimize the objective
function and the minimum is found by setting ∂φ

∂x ¼ 0. Thus we
can obtain the final equation system.

ATAxþ τsRT
s Rsxs þ τεRT

εRεxε þ τδRT
δRδxδ ¼ ATb:

ð16Þ
With independent regularization operators, the tomography

can produce different degrees of smoothness for each anisotropy
parameter update. Also, by adjusting regularization factors τs, τε
and, τδ, we have some leverage to control the tomographic back-
projection. For example, we can adjust the regularization factors
to limit updates to the current velocity model.

SYNTHETIC EXAMPLES

The proposed tomography method is tested on the 2D BP TTI
model (http://www.freeusp.org/2007_BP_Ani_Vel_Benchmark/
listing.html). We choose to work on the right side of the model in
order to avoid the salt structures. The true anisotropic model is
shown in Figure 1. In practice, the accuracy of reflection tomogra-
phy depends on the accuracy of picking the moveout residuals.
However, for testing purposes, the difference between the true
and current models is used to calculate the true travetime residuals
during ray tracing, thereby eliminating picking errors. In order to
obtain high resolution models, the residuals are picked on a grid
of 31.25 m × 100 m. Three experiments are conducted to invert
for Vp0; Vp0, ε and δ; and Vp0 and ε, respectively, in order to study
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their data fitting behaviors and the resolution of each parameter. The
same regularization is applied for each update parameter and for all
experiments. The initial velocity model consists of a constant ve-
locity water layer followed by a model with a depth gradient of
0.3 s−1. The initial ε and δ models have two layers, the isotropic
water layer being followed by a constant anisotropic layer with
ε ¼ 0.1 and δ ¼ 0.05. Three iterations of tomographic updating
are conducted for each experiment with smoothing constraints of
300 m in the horizontal direction and 100 m in the depth direction
gradually reduced to 50 and 25 m, respectively. True symmetry axis
information is used in all experiments and no muting is applied to
the migration gathers.
The first experiment is to invert for Vp0 only, keeping the simple

initial ε and δ values unchanged. The inverted velocity model
(Figure 2a) is very similar to the true model (Figure 1a) in shape.
The detailed lateral velocity resolution in the vicinity of the faults on
the right hand side of Figure 2a is particularly impressive, and may
be the result of dense, error-free picks. A high resolution image of
velocity errors (Figure 2b) is obtained by subtracting the updated
velocity model from the true model. Basically, this shows that the
updated velocity is too slow in the region where the assumed
Thomsen anisotropy parameter values are higher than the actual va-
lues, and vice versa. Tomography compensates for the estimated
errors in ε and δ with appropriate velocity updates. The gathers
(Figure 3b) are flat in general. However, residuals are still seen
at large offsets of some events and events below 7000 m show poor

continuity. The gathers also indicate that the reflectors are at incor-
rect depths compared to the gathers migrated with the true model
(Figure 3a).
The second experiment is to conduct a three-parameter joint

tomography that inverts for Vp0, ε, and δ, simultaneously. Although
the updated velocity model (Figure 4a) is similar to the true model
(Figure 1a) in general, discrepancies do exist (Figure 5a) with the
largest errors occurring in the isotropic layers. In contrast to the
velocity, the updated ε and δ models (Figure 4b, 4c) show lower
resolution. The gathers (Figure 3c) are nearly as flat as those
migrated with the true model (Figure 3a), which confirms that
the joint tomography fits data better. Depth errors for the reflectors,

Figure 1. The true BP 2D TTI model: (a) velocity; (b) ε; (c) δ.

Figure 2. The velocity model updated from the single parameter
tomography experiment compared with the true model: (a) the up-
dated model; (b) the errors of the updated model. In the area below
the water bottom and above 3000 m and in the isotropic layers, the
updated model shows low velocities, coincident with the fact that
the guessed ε and δ values are higher than the actual values. In most
of the area below 3000 m, it shows higher velocities than the true
values due to the fact that guessed ε and δ values are lower than the
actual values.

Figure 3. Gather comparison: (a) the gathers migrated with the true
model; (b) the gathers migrated with the final model obtained from
the single parameter tomography experiment; (c) the gathers
migrated with the final model obtained from the three-parameter
joint tomography experiment.
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on the other hand, are still seen in Figure 3c. This experiment
demonstrates that the joint tomography is nonunique and that there
is ambiguity among the anisotropy parameters.
The last experiment uses the true δ model and inverts for Vp0 and

ε, with the objective of determining whether knowledge of the true δ
values would help improve the accuracy of the results over the sec-
ond experiment. The experiment achieves gather flatness, similar to
that in the second experiment. As depicted in Figure 5, the updated
Vp0 and ε show at best only minimal error improvement. Generally
speaking, ε shows smaller error magnitude wherever the velocity
has smaller error magnitude, and vice versa. The velocity and ε the
errors have opposite signs. Thus, the knowledge of δ does not elim-
inate the ambiguity between Vp0 and ε.
Because the first two experiments have the same residual input

and initial model at the beginning, a convergence comparison is
conducted for the first round of tomographic updating between
the single parameter tomography and the joint tomography for three
parameters. The measurement of convergence is the percentage
RMS misfit to the data. As expected, the joint tomography provides
a better data fit (Figure 6), which conforms to the observation that
the final gathers of the second experiment are flatter than those of
the first experiment.

A FIELD TEST

The results here are for a 2D field data set acquired in the Gulf of
Mexico. The acquisition shot interval is 37.5 m and the receiver
interval is 12.5 m with 960 channels per shot. The maximum offset
is 12 km. As shown in Figure 7a, there is a vertical well drilled at
crossline 1560, with sonic data available between depths 3270
and 7272 m.
Because the tomographic inversion is nonunique, as shown in the

synthetic examples, the well information must be used in order to
obtain an anisotropic model that matches the well data. We decided

Figure 4. The final model from the three-parameter joint tomogra-
phy experiment: (a) the updated velocity; (b) the updated ε; (c) the
updated δ.

Figure 5. Model updating comparison between the three-parameter
joint tomography experiment and the two parameter joint tomogra-
phy experiments: (a) velocity errors of the three-parameter joint
tomography experiment; (b) velocity errors of the two parameter
joint tomography experiment; (c) ε errors of the three-parameter
joint tomography experiment; (d) ε errors of the two parameter joint
tomography experiment.
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to construct the initial velocity model by extrapolating the velocity
from the sonic data at the well location. Because the sonic data only
provide information for a limited depth range, the first goal of mod-
el building is to obtain a close velocity estimate for the region above
the geological layer (Figure 7a) where the sonic data start. It is

achieved with the three-parameter joint tomographic updating using
only the picks above the top Cretaceous reflector, about 1000 m
below where the sonic data start. Although there are ways to esti-
mate ε and δ for an initial anisotropic model (Gherasim et al., 2010),
the three-parameter joint tomography is performed starting from an
NMO velocity model with ε ¼ 0.0 and δ ¼ 0.0. The symmetry axis
information is assumed to follow the sediment beddings. Two itera-
tions of tomography flatten the gathers and produce an anisotropic
model. The resulting ε and δ estimates are directly used as initial
values for a later tomographic updating. The sonic velocity is in-
serted into the corresponding depth range of the resulting velocity
model at the well location. Then it is extrapolated, with the guide of
the seismic image, over the whole model volume for the region,
below the geological layer, where the sonic data start. This incor-
porated velocity model is then slightly smoothed and used as the
initial velocity for later tomography.
This constructed velocity is assumed close to actual velocity so

that during later tomographic updating, a “soft” control is applied
on the velocity update by adjusting the regularization parameters to
only allow small velocity changes. Consequently, most residuals are
back projected to ε and δ updates. As shown in Figure 7b, the signal
to noise ratio is very low, especially in the deep portion. Together
with the limitation associated with 2D data, it implies a need for
conservative updates. After five iterations of updates, the gathers
(Figure 8b) are flat. The updated velocity model (Figure 9b)

Figure 6. Data fit comparison between the single parameter tomo-
graphy and the three-parameter joint tomography.

Figure 7. The migration stack and gathers with the NMO velocity
model in the field data example: (a) the stack with the vertical well
marked; (b) the gathers. Figure 8. The final stack and gathers: (a) the stack; (b) the gathers.
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changes only slightly compared to the constructed initial model
(Figure 9a) and still matches the sonic data (Figure 10) at the well
location. The inverted ε and δ (Figure 11) have reasonable values
and the stack (Figure 8a) shows focused reflectors.

DISCUSSION

In the synthetic examples, we observe that single parameter
tomography with a guess for ε and δ is inadequate for perfect
seismic imaging. If we allow more degrees of freedom by simulta-
neously inverting for the perturbations of Vp0, ε and δ, the resulting
model fits the data well and flattens the seismic gathers. However,
the reflector depths are also normally in error due to the inaccurate
velocity caused by the ambiguity among Vp0, ε and δ. With the

knowledge of true δ, the ambiguity between ε and Vp0 is still seen
in the two parameter joint tomography. In general, if there is no
information other than surface seismic data, there is ambiguity
among all three anisotropy parameters. If one parameter can be
determined, for example, from well data, the ambiguity still exists
between the other two parameters.
An interesting observation in the joint tomography experiments is

that the velocity has a better resolution than ε and δ. To investigate
this issue, it is easier to start from the weak anisotropy approxima-
tion (Thomsen, 1986):

V ¼ Vp0ð1þ δ sin2 θ cos2 θ þ ε sin4 θÞ; (17)

and equivalently,

s ¼ sp0ð1þ δ sin2 θ cos2 θ þ ε sin4 θÞ−1: (18)

Expanding equation 18 in a Taylor series and keeping only the
linear terms yields

s ¼ sp0ð1 − δ sin2 θ cos2 θ − ε sin4 θÞ: (19)

As previously mentioned, sp0 is bundled with Δε and Δδ. The terms
sin2 θ cos2 θ and sin4 θ make the slowness derivatives associated
with ε and δ, and consequently the traveltime derivatives, smaller
in magnitude than the derivative with respect to sp0. They also imply
that these derivatives are more sensitive to raypath changes. Thus, it
is expected that ε and δ have a lower resolution, as confirmed by the
synthetic experiments.
Reflection tomography is a data fitting problem with some reso-

lution issues (Stork, 1992), and it is severely nonunique when three
anisotropy parameters are simultaneously inverted, even with well

Figure 9. Velocity comparison: (a) the constructed initial velocity
model; (b) the final model.

Figure 10. The velocity comparison at the well location between
the final model and the sonic data.

Figure 11. The final ε and δ models for the field data example:
(a) ε; (b) δ.
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data (Bakulin et. al, 2010a). Joint tomography provides a way to get
a better data fit, but it also adds more ambiguity to the problem. The
joint tomography provides an anisotropic model that fits the data
and has the model styling we wish, but this model may not be
the true model. Additional information, such as well data, is critical
to constrain the tomography, which is demonstrated in the field data
test. In the field data example, the sonic velocity is extrapolated over
the whole volume guided by the seismic image, and the resulting
velocity model is assumed close to the correct velocity. Such an
assumption may not be valid far away from the well, and some other
way may need to be developed to constrain the tomographic
inversion.
In all examples, the symmetry axis information is known or

assumed to follow the sediment bedding. We have not addressed
how errors in the symmetry axis affect the results. Theoretically, we
can also formulate it into the tomography equations and invert for it.
Then, we add more ambiguity and the system becomes even more
nonunique.

CONCLUSIONS

We develop a multiparameter joint tomography method for TTI
model building that can be used to invert for up to three anisotropic
parameters simultaneously with or without well data. The synthetic
experiments demonstrate that a single parameter tomography with
guesses of ε and δ is inadequate for building the model for an
anisotropic earth. The multiparameter joint tomography is more
suitable for fitting data. However, there is ambiguity among the
three anisotropy parameters, and it limits the resolution of each
parameter. A reliable estimate of δ does not eliminate the ambiguity
between the velocity and ε. Applying an independent regularization
on each anisotropy parameter provides a way to constrain one
parameter more than others. The field data example demonstrates
such a regularization strategy and the importance of including well
data as a constraint when estimating anisotropic models.
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