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In this article we discuss technology that can be used to 
undertake these processes, and, in particular, a method for 
both interpolating and regularizing aliased datasets using 
the anti-leakage Fourier transform (ALFT).

Figure 1 schematically describes the main areas of seis-
mic processing in which interpolation and regularization 
have an impact although it is probably true that no signifi-
cant seismic dataset is processed without the application of 
at least one interpolation and/or regularization method. 

Different methods of regularization  
and interpolation 
There are several methods for regularization and interpola-
tion, and these have different characteristics. A comparison 
of some of the characteristics is shown in Table 1. Binning, 
either static or flex(ible), is based on simply choosing a 
trace with certain characteristics and moving it (without 

T he anti-leakage Fourier transform (ALFT) is a 
regularization method using an iterative procedure 
for computing the spectrum of irregularly sampled 
data. For each iteration a discrete Fourier transform 

is performed. Then, the maximum Fourier component 
is selected and transformed back to the irregular grid. 
The component is subtracted from the input data, and 
the result is used in the next iteration. For irregularly 
sampled data, the ALFT can handle very steep dips, but 
for regularly sampled data, the aliased Fourier components 
of a certain event have the same amplitude as the true 
component. Consequently, the aliased components may be 
estimated, and the event is not properly reconstructed. In 
practice, results can also be degraded for situations where 
the sampling is close to regular. In this article, we show the 
results of using the un-aliased lower frequencies to provide 
spectral weights for the higher frequencies. This helps to 
avoid selection of the aliased component. It is shown on 
2D synthetic and 3D field data that the method can give 
a significant improvement for data with steeply dipping 
events.

Background
Seismic datasets are generally irregularly sampled in inline 
midpoint, cross-line midpoints, offset and azimuth. This 
irregular sampling can give lead to both poor levels of 
repeatability between 4D surveys (Eiken et al., 1999) and 
artifacts in pre-stack imaging (see, for example, Canning 
and Gardner, 1996). Irregular sampling can also limit 
the effectiveness of high-end 3D demultiple and imaging 
algorithms such as 3D SRME and wave-equation pre-stack 
depth migration (PSDM). To overcome this issue, it is com-
mon in seismic data processing to use regularization and 
interpolation. Although precise definitions vary, the process 
of regularization is usually described as being that which 
transfers samples from their irregular recorded location 
to locations on a regular grid. Interpolation processes are 
used to fill in any samples in that regular grid that are miss-
ing (extrapolation is generally held to be a process related 
to interpolation, albeit with its own special difficulties).  
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Figure 1 Schematic diagram showing the areas of major use of regularization 
and interpolation.
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The anti-leakage Fourier transform (ALFT) utilized is 
one of a class of algorithms knows as Fourier regularization 
methods. The general principle of Fourier regularization is 
to compute the spectrum of irregularly sampled data, and 
then use an inverse transform to reconstruct data at new 
locations (Figure 2). The inverse transform is straightfor-
ward, and can be done with a standard inverse discrete 
Fourier transform (DFT) or inverse fast Fourier transform 
(FFT). However, the direct forward transform using a DFT 
is not optimal, and suffers from ‘spectral leakage’ in the 
Fourier domain. This spectral leakage can be understood by 
realizing that a sampled signal can be seen as a continuous 
signal multiplied by an impulse train. This multiplication is 
equivalent to convolution in the Fourier domain with the 
Fourier transform of the pulse train. 

In the case of irregular sampling, this function typically 
has a strong peak at zero frequency (DC component), but 
also non-zero amplitudes at non-zero frequencies. The 
convolution means that energy at a certain frequency 
‘leaks’ to adjacent frequencies. If the spectrum is then used 
to reconstruct data at new locations, the results are not 
optimal (Figure 3).

adjusting the trace data itself) to a given bin location. The 
choice of trace can be made based on one or a combination 
of characteristics (e.g. in 4D processing it is common to 
choose the trace from monitor survey with the minimum 
value of Δs+Δr where Δs is the distance of the monitor 
source location from the base source location and Δr is 
the distance of the monitor receiver location from the base 
receiver location). 

Flex binning was once the main method in the seismic 
processing industry to handle empty bins, but nowadays 
it is much more common to use some form of amplitude 
and dip-friendly interpolation (for example, a Radon 
transform-based interpolation). Pre-stack partial migration 
(DMO, inverse DMO and, in particular, AMO) has also 
been commonly applied as a regularization methodology 
and can be used if a correction of azimuths is needed. The 
main drawback to such methods is a tendency towards 
operator instability at wide azimuths and near offsets. f-x 
and f-x-y techniques are typically used to interpolate regu-
larly sampled data to a finer grid. However, in this article 
we will concentrate on a Fourier regularization method 
using the ALFT. 

Method Assumptions Interpolation beyond 
Aliasing

Characteristics

(Flex)-Binning Local 1-D assumption No Very cheap

DMO/DMO-1 AMO Model needed No Variable speed. Can be 
expensive.

f-k/f-x/f-x-y Interpolation Limited number of dips 
present in data. Regular 
spatial sampling

Yes Cheap. Not optimal for 
larger gaps.

Radon transform 
Interpolation 

Limited number of dips 
present in data

Yes Cheap.
Handles conflicting dips & 
large gaps

Fourier regularization Band-limited data Yes More costly.

Table 1 Comparison of characteristics of interpolation and regularization technology.

Figure 2 The general principle of Fourier regularization.
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Anti-leakage Fourier transform (ALFT)
Although the actual implementation used is more com-
putationally efficient, in principle, for each iteration, the 
following steps are done (see Xu et al., 2004 for more 
details and Figure 4 for an example):
1. Compute the DFT of the input data.
2. Select the strongest Fourier component.
3. Add this component to the ‘estimated spectrum’
4. Inverse DFT of this component to the original grid.
5. Subtract the component from the input data. 

The last step provides the input data for the next iteration. 
When sufficient iterations have been done, the estimated 
spectrum can be used to create data at new locations using 
an inverse DFT or, in case of a regular output grid, an 
inverse FFT. Note that due to spectral leakage of other 
components, the initial estimate of the strongest component 
(and other components) may not be exact, and the same 
component can be chosen again in later iterations. 

As mentioned before, the ALFT can handle sparsely 
sampled data, but the performance can degrade for 
data that is close to regular. To explain this, consider 
the example in Figure 5 which shows the spectrum of a 

Fourier regularization methods, therefore, should not 
use the DFT to do the forward transform. A least-squares 
estimation of Fourier components would be an example 
of a better option (e.g., Duijndam et al., 1999). As long 
as the data are band-limited and sufficiently well sam-
pled, the least squares Fourier regularization (and other 
methods, including the ALFT) can completely eliminate 
spectral leakage. In practice, however, seismic data are 
often also sparsely sampled, and can show large gaps in 
the sampling. In these situations a standard least-squares 
estimation can become poorly determined, and the estima-
tion of the spectrum sub-optimal. Several methods have 
been proposed to improve on the standard least-squares 
method, such as the high-resolution transforms (see Sacchi 
and Ulrych, 1996, Zwartjes and Sacchi, 2007), MWNI 
(Liu and Sacchi, 2004), POCS (Abma and Kabir, 2006), 
and the ALFT (Xu et al., 2004 and 2005). The standard 
ALFT can handle sparsely sampled data to some extent, 
but interestingly, the performance can degrade for data 
with sampling that only shows limited irregularities. 
In this article we introduce an improved version of the 
standard ALFT to minimize the spectral leakage in the 
forward transform.

Figure 3 Taking a direct forward transform from the time domain (left) to the Fourier domain (right) of a regularly sampled dataset (top) and an irregularly 
sampled dataset (bottom) leads to different results. The irregularly sampled dataset suffers from spectral leakage in the Fourier domain.
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the true spectrum of the signal is repeated, in principle, an 
infinite number of times. This also means that the aliased 
spectra are identical and, more importantly, as strong in 
amplitude as the true spectrum. Consequently, when the 
ALFT selects the strongest component, it may well be the 
aliased component instead of the true component in a 
practical computer implementation. This would mean that 
the event is not reconstructed well at new locations.

Anti-alias anti-leakage Fourier transform
The following method can be used to improve the handling of 
aliased energy (Schonewille et al., 2009): 
1. Compute the spectrum for the un-aliased frequencies using 

the standard ALFT.
2. Extrapolate the absolute spectrum to higher frequencies and 

higher k-values to obtain weights for the higher frequencies.
3. Compute the ALFT for the aliased frequencies, but select the 

maximum weighted component.

The weights are derived from the smoothed absolute spectrum 
(Figure 6). For the higher frequencies, the weights increase the 
amplitudes of the true events, and consequently, the true event 
will be stronger than the aliased components, and be selected 

simple dataset with two dipping layers. Due to the sparse 
sampling, relative to the bandwidth of the data, aliasing is 
visible. Note that a normal FK-spectrum would only show 
the spectrum up to a normalized wave-number of 0.25 (in 
this figure), but when using a DFT, a larger k-range can be 
specified. It can be seen that the spectrum is repeated. A 
regularly sampled signal can be seen as a continuous signal 
that is multiplied by an impulse train with sampling interval 
Δx. This is equivalent to convolution in the Fourier domain 
with a pulse train with sampling interval 1/Δx. As a result, 

Figure 4 A schematic representation of a single iteration of the anti-leakage Fourier transform (ALFT). Starting at the top left, the DFT of the input data is cal-
culated (top right); the maximum of the Fourier coefficients is chosen and added to the estimated output spectrum (bottom right); this coefficient is then taken 
through an inverse DFT to the input grid (bottom left) and subtracted from the input data. 

Figure 5 Spectrum of a regularly sampled data set with two events computed 
over a twice as large bandwidth as normal.



© 2009 EAGE www.firstbreak.org 89

special topicfirst break volume 27, September 2009

Data Processing

cross-lines by 40 inlines, and 32 time samples. The exact 
midpoints are used, and no duplicate trace rejection is done. 
The trace weighting scheme is based on Voronoi tessellation. 

by the ALFT. Note that the un-weighted component is added 
to the estimated spectrum. The improvement the anti-alias 
ALFT gives over the standard ALFT can be illustrated using 
synthetic data.

As an illustration, in Figure 7 the spectrum of Figure 5 esti-
mated with a standard ALFT is shown. The implementation of 
the ALFT used in this example works on each frequency slice 
using the full bandwidth. It will be clear that a spectrum like 
this cannot provide a satisfactory interpolation.

A significant improvement can be obtained with the stand-
ard ALFT by using a variable bandwidth, which is smaller 
for lower frequencies. The result of this method is shown in 
Figure 8. Note that this method clearly cannot remove the 
problems at higher frequencies.

In Figure 9, the results of the anti-alias ALFT are shown. 
In this case the estimated spectrum is close to the desired 
spectrum.

The data after reconstruction onto a finer grid using the 
spectra in Figure 8 and 9, as well as the difference with the 
ideal data, are shown in Figure 10. The anti-alias method 
clearly improves the reconstruction of the high frequencies 
for the steepest event. The stronger the aliasing in the data, the 
bigger these differences will be. Note that both methods show 
some edge effects, but these can in practice be reduced, for 
example by windowing, 

Data examples
In Figures 11-14, a 3D field data example is given. The data 
volume was processed in overlapping 3D windows of 20 

Figure 6 The weights are computed at unaliased frequencies (in the green box) 
and applied to the higher frequencies. The amplitudes of the events in the 
white polygons will be increased.

Figure 8 Spectrum of the data in Figure 5 estimated with the standard ALFT 
with variable bandwidth, which is smaller for lower frequencies.

Figure 7 Spectrum of the data in Figure 5 estimated using the standard ALFT. Figure 9 Spectrum of the data in Figure 5 estimated with the anti-alias ALFT.

Figure 10 a) Ideal data; b) Input data; c) data reconstructed with the standard 
ALFT with variable bandwidth; d) Difference between c and a; e) data recon-
structed with anti-alias ALFT; f) Difference between e and a.
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Figure 11 The midpoint sampling before (left) and after (right) regularization. The inline and cross-line spacing is 12.5 m.

Figure 12 One cross-line section of 3-D input data (left) and f-k spectrum of the diffraction event in the green box (right).

Figure 13 One cross-line section after full bandwidth ALFT (left) and f-k spectrum of data in green box (right).

Figure 14 One cross-line section of the data after variable bandwidth ALFT (left) and FK spectrum of data in green box (right). 
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The data are from the Faeroes-Shetland basin, and for this 
example an area with particularly steeply dipping diffraction 
events is selected.

In Figure 11, the sampling before and after regulariza-
tion is shown. For most of the data, the output cross-line 
sampling is twice as dense as the input sampling.

In Figure 12, part of the input data is shown with a 
complex area of steeply dipping diffraction events high-
lighted. (For display only, static binning was applied, and 
zero traces are shown for empty bins). The f-k spectrum 
(using live traces only) on the right is plotted twice as nar-
row as the other spectra since the average trace spacing is 
twice as large as for the regularized data. 

Figure 13 shows the results of the ALFT with a full spa-
tial bandwidth (on the output grid) for all frequencies. The 
presence of aliased energy is obvious, in particular, in the 
spectrum at normalized wavenumbers +/- 0.5 which leads 
to jitter for some events. The steeply dipping diffraction 
event is poorly resolved showing that aliasing can cause 
problems for the ALFT, even for irregularly sampled data. 
For Figure 14, a variable spatial bandwidth, as a function 
of frequency, was used. For lower frequencies this avoids 
the higher wavenumbers to be estimated in the ALFT. 

Finally, in Figure 15, the anti-alias ALFT is used. 
This effectively combines the advantage of an adaptive 
bandwidth reduction for lower frequencies with a further 
de-aliasing of the higher frequencies, in particular. The 
(probably aliased) energy around a normalized wavenum-
ber of 0.2 and frequency of 40 Hz is reduced, and the 
steeply dipping event has been reconstructed well.

A second field example is shown in Figures 16-21. Once 
again this is from a highly complex data area with multiple 
conflicting dips and aliased arrivals (particularly in the 
cross-line direction). Figure 16 shows an inline section on a 
nominal grid. The section in Figure 17 clearly indicates the 
aliasing problem in the cross-line direction. Figure 18 shows 
a cross-line of data, before interpolation and regularization 
to the desired fine output grid. The same cross-line is shown 
in Figure 19 after regularization with the anti-alias ALFT. 
Finally, Figures 20 and 21 show a second example before 
and after regularization with the anti-alias ALFT. This 
example is a section with strongly dipping diffractions, 
and includes events in the deeper section with poor S/N 
ratio. In both cases the anti-alias ALFT does a good job of 
reconstructing the data.

Figure 15 One cross-line section of the data after anti-alias ALFT (left) and f-k spectrum of data in green box (right). The anti-alias ALFT combines the advantages 
of a variable bandwidth (as shown in Figure 14) with further de-aliasing of the higher frequencies, leading to an excellent reconstruction of the steeply dipping 
events in this complex and sparsely sampled area. 

Figure 16 An example inline from a second marine 3D dataset illustrating the 
complexity of the dataset to be regularized.

Figure 17 A cross-line section from the second example dataset showing the 
aliasing present in many of the dipping events. Figures 18 and 19 show data in 
the area bounded by the green box.
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Conclusion
The anti-alias ALFT uses un-aliased lower frequencies to 
provide spectral weights for the higher frequencies which 
can help to avoid the selection of aliased components in the 
ALFT. It is shown on 2D synthetic and 3D field data that 
the method can give a significantly better preservation of the 
higher frequencies for steeply dipping events. 
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Figure 18 The area of the cross-line section highlighted in Figure 17 on the 
desired fine output grid before regularization.

Figure 19 The data in Figure 18 after regularization to the desired fine output 
grid using the anti-alias ALFT.

Figure 21 The data in Figure 20 after regularization to the desired fine output 
grid using the anti-alias ALFT.

Figure 20 A second example cross-line on the desired fine grid spacing before 
regularization. 




