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Parabolic Radon transform, sampling and efficiency

M. A. Schonewille∗ and A. J. W. Duijndam‡

ABSTRACT

A good choice of the sampling in the transform domain
is essential for a successful application of the parabolic
Radon transform. The parabolic Radon transform is
computed for each temporal frequency and is essentially
equivalent to the nonuniform Fourier transform. This
leads to new and useful insights in the parabolic Radon
transform.

Using nonuniform Fourier theory, we derive a mini-
mum sampling interval for the curvature parameter and
a maximum curvature range for which stability is guar-
anteed for general (irregular) sampling. A significantly
smaller sampling interval requires stabilization. If diago-
nal stabilization is used, no gain in resolution is obtained.

In contrast to conventional implementations, the cur-
vature sampling interval is proposed to be inversely pro-
portional to the temporal frequency. This results in im-
proved quality of the transform and yields significant
savings in computation time.

INTRODUCTION

The least-squares parabolic Radon transform is a popular
transform for suppressing multiples and reconstructing miss-
ing traces. When applying the parabolic Radon transform, the
sampling of the transform domain, which is defined by the sam-
pling interval in the transform domain (1q) and the curvature
range (Q), must be chosen. A good choice of these parameters
is essential for the performance of the parabolic Radon trans-
form and is the principal subject of this paper. The aspects
considered are aliasing, stability of the inversion, resolution,
and efficiency.

Aliasing in the parabolic Radon transform is discussed by
Hugonnet and Canadas (1995) and by Marfurt et al. (1996). The
resolution for both the parabolic and linear Radon transform
is discussed by Gulunay (1990).
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Efficiency can be improved by using the Toeplitz structure
of the operators involved and, since the operators are indepen-
dent of the data, by precomputing the operator and applying it
to a number of data gathers with the same geometry. Kelamis
and Chiburis (1992) propose a partial stack to regularize the
data, which makes the use of precomputed operators possible.

We (1) give a short review of the parabolic Radon trans-
form and the nonuniform Fourier transform, (2) show that
for each temporal frequency the transforms have an equiva-
lent structure, (3) use nonuniform Fourier theory to derive the
maximum Q and minimum 1q for which stability is guaran-
teed, and (4) investigate the effects of using a smaller 1q or
larger Q while using diagonal stabilization. We propose using
a 1q that is inversely proportional to the temporal frequency
(consequently, the complete transform becomes independent
of frequency). The frequency-dependent 1q leads to more ef-
ficient algorithms and provides a natural way to handle the
lower temporal frequencies better. Finally, we give a synthetic
example in which the new algorithm is compared with the con-
ventional parabolic Radon transform.

PARABOLIC RADON TRANSFORM

This section is a short overview of the parabolic Radon trans-
form. A more comprehensive overview can be found in Zhou
and Greenhalgh (1994) and in Dunne and Beresford (1995).

Forward transform

The discrete parabolic Radon transform was introduced by
Hampson (1986). The direct forward transform is defined as

m(q, τ ) =
N∑

n=1

d
(
xn, t = τ + qx2

n

)
, (1)

where d(xn, t) is the data in the offset(x)-time (t) domain, N is
the number of traces, and m(q, τ ) is the data in the parabolic
Radon domain. In the parabolic Radon domain the data are a
function of the curvature q and the zero offset intercept time τ .
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668 Schonewille and Duijndam

After a temporal Fourier transformation, the parabolic
Radon transform can be calculated for each temporal fre-
quency component ω:

M(q, ω) =
N∑

n=1

D(xn, ω) exp
(

jωqx2
n

)
, (2)

where M(q, ω) and D(xn, ω) are the temporal Fourier trans-
forms of m(q, τ ) and d(xn, t), respectively.

Inverse transform

An approximate inverse of relation (2) is

D(xn, ω) =
Nq∑
i=1

M(qi , ω) exp
(− jωqi x

2
n

)
, (3)

where Nq is the number of q values. Using matrix notation,
equation (3) can be written as

d = Lm, (4)

with

mi = M(qi , ω), i = 1, . . . , Nq, (5)

Lni = exp
(− jωqi x2

n

)
, (6)

dn = D(xn, ω), n = 1, . . . , N. (7)

Least-squares formulation

Instead of using the transform pair given by equations (2)
and (3), it is common practice to replace the forward transform
with a least-squares transform, giving better reconstruction and
better resolution in the Radon domain which allows better
signal and noise separation.

The least-squares forward transform is derived by using the
inverse transform [equations (3) and (4)] as a forward model
in a least-squares formulation:

m̂ = (LH L)−1LH d, (8)

in which m̂ is the estimated data in the Radon domain.

Sampling in the transform domain

Several authors have studied sampling in the transform
domain [see Hugonnet and Canadas (1995) and references
cited therein]. For regular sampling in x, xn= xmin+ n1x and
n= [0, . . . , N− 1], the well-known formulas for the sampling
interval 1q and the maximum q-range that can be estimated
are, respectively,

1q <
2π

ω
(
x2

max − x2
min

) , (9)

where xmax= xmin+ (N− 1)1x is the maximum offset, and

Qlsip = π

ωxmax1x
, (10)

where Qlsip is the curvature range for which local summa-
tion in phase occurs (for the largest offsets; see Hugonnet and
Canadas, 1995). In conventional parabolic Radon transform
implementations 1q is chosen independent of the frequency
by setting ω=ωmax in equations (9) and (10).

If the data are not aliased, then the q-range can be extended
by applying operator dealiasing (Cary, 1998). Although this
does not allow for plain parabolic events (wavelet independent
of offset) with a curvature range larger than Qlsip (it can be de-
rived that in this case the data will be spatially aliased), it can
give a significant improvement in case of an offset-dependent
frequency content (e.g., from NMO stretching) and in case of
smearing of energy in the Radon domain from amplitude ver-
sus offset (AVO) effects, for example.

NONUNIFORM FOURIER TRANSFORM

The parabolic Radon transform is very closely related to
the nonuniform Fourier transform. Consider a set of non-
uniformly spaced, distinct, and ordered sample positions (x1 <

x2 < · · ·< xN). For a band-limited signal we can use the discrete
inverse Fourier transform as a model for the data P(xn, ω):

P(xn, ω) = 1k

2π

M−1∑
m=0

P̃(m1k, ω) exp(− jm1kxn),

n = 1, . . . , N, (11)

where P̃(m1k, ω) are the unknown Fourier coefficients. By
sampling the Fourier domain with sampling interval 1k, we
implicitly consider the data set to be one period of a periodic
signal. The periodicity interval is given by

X = 2π/1k. (12)

Equation (11) can be written in matrix notation as

p = Ap̃, (13)

with

p̃m = P(m1k, ω), m= 0, . . . ,M − 1, (14)

Anm = 1k

2π
exp(− jm1kxn), (15)

and

pn = P(xn, ω), n = 1, . . . , N. (16)

The nonuniform forward Fourier transform (Feichtinger et al.,
1995; Duijndam et al., 1999) is now defined as the weighted
least-squares inverse of equation (13):

ˆ̃p = (AH WA)−1AH Wp, (17)

where W is a diagonal matrix with diagonal elements

Wii = xi+1 − xi−1

2
. (18)

For band-limited signals this transform is exact, apart from
spatial aliasing introduced by the sampling of the transform
domain. The matrix AH WA is theoretically invertible as long
as the number of distinct samples N is larger than or equal to
the number of Fourier coefficients M , without any restriction
to the actual sample positions (see Bagchi and Mitra, 1996).
However, in the case of large gaps in the sampling positions,
the conditioning of AH WA is very bad; in practice, a good
reconstruction of the signal is impossible in the gaps (see, e.g.,
Duijndam et al., 1999).

For a proper Fourier transform, or reconstruction, of the sig-
nal, the choices of the sampling interval in the Fourier domain
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Parabolic Radon Transform 669

1k and the number of Fourier coefficients M is of great impor-
tance. Our objective is to achieve an accurate reconstruction of
the signal. This means that we should have a stable inversion
and a good data fit. If the data are not fitted well, the forward
model does not appropriately describe the data. It can be ex-
pected that the data fit becomes better if the k-range in the
model is increased. The objective then implies that we would
like to use the largest k-range that can be estimated in a stable
way while avoiding spatial aliasing.

The choices of 1k and M are ultimately related to the gaps
between the sample positions. Besides the gaps between the
actual samples, we also introduce a gap1xi through the choice
of1k between the last sample in the set, xN , and the first sample
in the next period, x1+ X:

1xi = x1 + X − xN = 2π
1k
− Xa, (19)

where Xa= xN − x1 is the actual aperture of the sampling set.
The largest gap in the sampling set is

δ = max(1xi ,1xa), (20)

where 1xa is the largest gap between the actual sample posi-
tions. Gröchenig (1993) proved that the condition number κ of
the matrix AH WA for general irregular sampling satisfies

κ ≤


2π

(M − 1)1k
+ δ

2π
(M − 1)1k

− δ


2

for δ <
2π

(M − 1)1k
. (21)

The smaller the condition number, the more stable the inver-
sion. Note that equation (21) represents an upper bound for κ ;
often, the conditioning is better than this upper limit suggests.
We show, however, that the conditioning of the least-squares
parabolic Radon transform for regular spatial sampling is fairly
well described by equation (21). Therefore, let’s study the im-
plications of equation (21) further.

The general behavior of the upper bound of the condition
number as a function of M and 1k is illustrated in Figure 1
for the case 1xa= 0.04 and Xa= 1. For fixed M , the upper
bound of the condition number increases if 1k decreases and
goes to infinity at the white line, where δ= 2π/[(M − 1)1k].
Note that the upper bound is defined only to the right of the
white line, and it is clipped to 1000 for display purposes. For

FIG. 1. Upper bound of the condition number for Fourier re-
construction as a function of the sampling interval in the trans-
form domain, 1k, and the number of estimated k-values, M .

sufficiently large M the inversion always becomes unstable,
which is obvious.

With respect to 1k we can distinguish two regions:

1) The region for which the gap that is introduced is larger
than the maximum actual gap (1xi >1xa), which is the
case for

0 < 1k <
2π

Xa +1xa
, (22)

and
2) its complement, 1xi ≤1xa, for

2π
Xa +1xa

≤ 1k <
2π
Xa
. (23)

The upper bound1k< 2π/Xa stems from the fact that beyond
that range the periodicity interval X= 2π/1k is smaller than
the actual aperture Xa and serious edge effects are introduced.

From equation (21) we can derive that the maximum number
of Fourier coefficients that can be estimated (and the largest
k-range, to a good approximation) is obtained at the boundary
between these two regions,

1k = 2π
Xa +1xa

, (24)

for which1xi =1xa. In Figure 1 this1k is marked by the arrow
at the top. In the next section we will show that for the parabolic
Radon transform the 1q related to 1k also provides a good
data fit.

With equations (24) and (21), a theoretical upper bound for
M is

M < Xa/1xa + 2. (25)

Relations (24) and (25) specify the sampling in the transform
domain, based on the upper bound for the condition num-
ber, equation (21). For the special case of regular sampling
(xn= n1x), these results correspond to the standard discrete
Fourier transform choices:

1k = 2π
N1x

(26)

and

M < N + 1. (27)

If, from prior information, we know that we can reduce the
k-range, then we can decrease 1k and M .

PARABOLIC RADON TRANSFORM AND THE
NONUNIFORM FOURIER TRANSFORM

In the parabolic Radon transform we estimate, for each ω,
M(qi , ω) in a least-squares sense from equation (3), repeated
here for convenience:

D(xn, ω) =
Nq∑
i=1

M(qi , ω) exp
(− jωqi x

2
n

)
. (28)

Using the variable transformations yn= x2
n and k′i =ωqi , we can

write this formula as

Dn(ω) =
Nq∑
i=1

M(k′i , ω) exp(− jk ′i yn). (29)
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670 Schonewille and Duijndam

Comparing equation (29) to equation (11), we see that, for a
single ω, the parabolic Radon transform is essentially identi-
cal to the nonuniform Fourier transform. This implies that the
results concerning the nonuniform Fourier transform can be
applied to the parabolic Radon transform. The variable trans-
formation yn= x2

n can be interpreted as a quadratic stretch-
ing of the x-axis, which turns parabolas into straight lines (see
Figure 2).

From the variable transformation k′i =ωqi it follows that a
constant1q as used in the conventional parabolic Radon trans-
form yields a sampling in k′ with smaller sampling intervals for
lower temporal frequencies (Figure 3). As a consequence, the
periodicity in the spatial domain becomes larger and larger for
lower frequencies (and a larger gap is introduced).

FIG. 2. Stretching of the x-axis. A nonuniform Fourier trans-
form of the stretched data is strongly related to the parabolic
Radon transform.

FIG. 3. Sampling in the transform domain: constant 1k′ for
the nonuniform Fourier transform versus constant 1q for the
conventional parabolic Radon transform.

Using k′i =ωqi and equation (24), we obtain

1q = 2π
ω(Ya +1ya)

= 2π
ω
(
x2

max − x2
min +1x2

a

) , (30)

where 1x2
a = max (x2

n+1− x2
n), n= [1, . . . , N− 1] is the maxi-

mum gap in sampling positions after the quadratic stretching
of the x-axis. We conclude that 1q should depend on ω, and
should not be chosen fixed corresponding toωmax as in conven-
tional parabolic Radon transform implementations.

Using equation (25), we find

M<Ya/1ya + 2 = x2
max − x2

min

1x2
a

+ 2. (31)

These aliasing/stability conditions are valid for general (irreg-
ular) spatial sampling.

Let us now look at the case of regular sampling (xn=
xmin+ n1x, n= [0, . . . , N− 1]). Obviously, after the stretching
of the x-axis, the largest gap in the actual sampling is between
the two largest offsets:

1x2
a = x2

max − (xmax −1x)2 = 2xmax1x − (1x)2, (32)

where xmax= xmin+ (N− 1)1x. For 1q we find, using equa-
tion (30),

1q = 2π
ω
(
x2

max − x2
min + 2xmax1x − (1x)2

) . (33)

Note that equation (33) satisfies equation (9) but is more pre-
cise. For M we find, using equation (31) for this case or regular
sampling,

M <
x2

max − x2
min

2xmax1x − (1x)2
+ 2. (34)

Because normally x2
maxÀ x2

min and xmaxÀ1x, the maximum
M that can be estimated is approximately half of the aperture
divided by the sampling interval (xmax/21x).

Equations (33) and (34) specify the sampling in the transform
domain for the parabolic Radon transform for regular sampling
in x and are in fact derived from the stability criterion as given
in equation (21), which is displayed in Figure 1 (for general
sampling). For comparison, in Figure 4a the numerically de-
termined condition number of the matrix AH A is plotted for
the parabolic Radon transform with regular sampling in x. By
choosing 1q not fixed but inversely proportional to ω, we are
effectively using a constant 1k′:

1k′ = 2π
Ya +1ya

, (35)

which is also indicated by the arrow in Figure 4a. In this ex-
ample, xmin= 0, 1x= 1/49, and N= 50, from which we have
Ya= 1 and 1ya= 0.04. Again, to the right of the white line,
the condition number as given by equation (21) is bounded.
Even though we are now considering the unweighted matrix
(because that is most commonly used for the parabolic Radon
transform), we can conclude that the general behavior closely
follows that of the theoretical upper bound (see Figure 1). The
major difference is that the actual condition number increases
less strongly with increasing M .

For regular sampling in x, the maximum q-range (M1q)
that can be estimated in a stable way can be derived directly
from equations (33) and (34). Note, however, that normally
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Parabolic Radon Transform 671

x2
maxÀ x2

min and xmaxÀ1x and therefore equation (33) can be
approximated by 2π/ωx2

max and equation (34) by xmax/21x, so
that we find

M1q ≈ xmax

21x

2π
ωx2

max
= π

ωxmax1x
, (36)

which is equal to the conventional formula [equation (10)]. The
curvature range is inversely proportional to xmax.

If the curvature range of the data is larger than the curva-
ture range that can be estimated in a stable way, then the data
will not be fitted well. From equation (36) it follows that both
xmax and ω can be reduced to increase the curvature range that
can be estimated in a stable way, which can easily be under-
stood from nonuniform Fourier theory. After the x-squared
stretch, the largest gaps occur at the largest offsets. Reducing
xmax and/or ω is proposed by Hugonnet and Canadas (1995).
Better than simply removing large offsets and/or high frequen-
cies, one could determine for each temporal frequency the max-
imum offset range that could be used in the least-squares inver-
sion. The stack could be normalized in the frequency domain by
the effective fold. Note that decreasing the number of samples
to increase the k′-range and curvature range strongly reduces
the resolution in the transform domain [see equation (33)].

Not only the estimated curvature range but also the 1q
(or 1k′) affects the data fit. This is demonstrated in Figure 4b.
The residual energy (the sum of the squares of the difference
between the original data and the data after forward and back-
ward transformation) is given as a function of1k′ and M , with
N= 50 and Ya= 1. For each M , a test data set is calculated

FIG. 4. Parabolic Radon transform: (a) condition number;
(b) data fit, both as a function of the sampling interval in
the transform domain, 1k′, and the number of estimated
k′-values, M .

with 10 parabolas with random curvatures (within the calcu-
lated curvature range) and 1k′ is varied. The residual energy
is scaled so a value of 1 corresponds with the energy of one
trace. In the region left of the line, stability is not guaranteed.
Remarkably, to the right of this line the data fit starts to de-
crease. On the line the data fit is good (i.e., the residual energy
is much smaller than the energy of one trace), but for the best
data fit a somewhat smaller 1k′ is desired.

DIAGONAL STABILIZATION

It has been shown that both a small1k′ and a large k′-range
lead to instability. To prevent noise from blowing up, some
kind of stabilization must be used. The most commonly used
stabilization is diagonal stabilization. In this section the effect
of using diagonal stabilization is discussed for both cases of
instability.

The diagonally stabilized least-squares transform

ˆ̃p = (AH A+ α2I)−1AH p (37)

is the least-squares solution of the augmented system of
equations (

p

0

)
=
[

A

αI

]
p̃. (38)

The diagonal stabilization implicitly specifies that the signal
should be zero everywhere. One may look at this as prior in-
formation. The weight of this information is controlled by α.
It implies that for spatial locations where the vector equation
p=Ap̃ does not specify enough information, the diagonal sta-
bilization will push the reconstructed signal to zero.

Instability caused by a large k′-range

In this section, the effect of using diagonal stabilization (with
α2 equal to 1% of the main diagonal value of AH A) to handle
instability caused by a large k′-range will be demonstrated using
a synthetic example. In Figure 5 the absolute amplitude spec-
trum of a monofrequency data set consisting of one parabolic
event with curvature just inside the estimated k′-range is shown
for a sufficiently small k′-range. In Figure 6 the parabolic Radon
transform spectrum is shown for a k′-range that is too large. The
spectrum should have one peak of amplitude one; instead, the
energy of the single event spreads over a large part of the spec-
trum. The interpretation of diagonal stabilization given above
helps to explain the spreading of energy. After the quadratic
stretching, the sampling interval is larger for larger offsets.
If these intervals are too large, then the prior information
between the sampling points will dominate the result of the
least-squares inversion and the reconstructed signal will be
zero. As an illustration, in Figure 7 the result of interpolation
to a grid with half the offset sampling interval is shown for the
good k′-range and in Figure 8 for the k′-range that is too large.
Note that the data fit at the original grid is good in both cases.

Another disadvantage of the spreading of the energy is that
specific processing of the multiples in the transform domain will
also affect the primaries and vice versa (see also Hugonnet and
Canadas, 1995).

It can be concluded that diagonal stabilization is not a proper
means to increase the k′-range. Instead, the offset range should
be reduced, as described above.
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672 Schonewille and Duijndam

Instability caused by a small ∆k′

When using a small 1k′, a large gap is introduced in the
(implicitly) periodic data between the largest offset and the
smallest offset of the next period. After a forward transfor-
mation, the data can be reconstructed, in principle, within
the complete aperture, defined by 2π/1k′, for the academic
case that there is no noise. To illustrate this, a monochromatic
single curvature data set is used (see Figure 9). The number of
offsets is 40. After the least-squares forward transformation,
the data can be reconstructed on a new grid. Figure 10 shows
the result for 1k′ = 0.751k′a, where 1k′a= 2π/(Ya +1ya) [see
equation (35)], and no diagonal stabilization. Although the
condition number is large, using double precision compu-
tations we can extrapolate the data well for the offsets of
1000 m and further. In Figure 11 the result is shown in the
case of diagonal stabilization. Now the data have not been
reconstructed beyond the original aperture. The diagonal
stabilization (again 1%) forces the reconstruction to zero
in large gaps. In the next section we demonstrate that, as a
consequence, the resolution in the transform domain is not
higher than for the choice of 1k′ =1k′a.

RESOLUTION

In this section the equivalence between the nonuniform
Fourier transform and the parabolic Radon transform will be

FIG. 5. Absolute amplitude spectrum; k′-range good.

FIG. 7. Interpolated data; k′-range good.

used to study the resolution of the parabolic Radon transform.
We will investigate whether a smaller 1k′ can lead to a better
resolution.

To find analytical expressions for the response of the
parabolic Radon transform, we use the discrete Fourier trans-
form of regularly sampled data. This is possible because band-
limited, irregularly sampled data can be reconstructed on a
regular grid by

pr = Ar (AH A)−1AH p (39)

as long as the signal is sampled sufficiently dense. The matrix
Ar is similar to A [equation (15)] for regularly spaced xn:

Ar,nm = 1k

2π
exp(− jm1kn1x), (40)

where 1x= X/N= 2π/N1k. Note that Ar represents a stan-
dard inverse discrete Fourier transform and therefore

2π1x

1k
AH

r Ar = I. (41)

Combining equations (39) and (41) yields

2π1x

1k
AH

r pr = (AH A)−1AH p, (42)

which shows that the least-squares inverse of the irregularly
sampled data is equal to the discrete Fourier transform of the

FIG. 6. Absolute amplitude spectrum; k′-range too large.

FIG. 8. Interpolated data; k′-range too large.
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Parabolic Radon Transform 673

regularly sampled data. The inverse (AH A)−1 exists as long as
the number of estimated k-values is smaller than or equal to
the number of distinct spatial samples.

Resolution in case of no stabilization

For a certain frequencyω = ω0, the response of the parabolic
Radon transform for a single curvature data set is the same as
the response of a single wavenumber data set for the Fourier
transform. The response can therefore be calculated by

G(k′, ω0) =
N−1∑
n=0

P(ω0) exp( j (k′ − k′0)n1y), (43)

where k′0 is the wavenumber of the data set. If we take the ampli-
tude P(ω0)= 1 and leave out the ω0 from G(k′, ω0), we obtain

G(k′) =
N−1∑
n=0

exp( j (k′ − k′0)n1y). (44)

FIG. 9. Single curvature monochromatic data set.

FIG. 10. Reconstructed data with 1k′ = 0.751k′a and no stabi-
lization. The data are extrapolated well.

The absolute value of this function is

|G(k′)| = |sin((k′ − k′0)1yN/2)|
|sin((k′ − k′0)1y/2)| . (45)

The formula sin(N x)/ sin(x) is the discrete counterpart of the
sinc function sin(x)/x.

For the discrete sinc function two components of equal in-
tensity may be regarded just resolvable if the maximum of one
component coincides with the first minimum of the other (see
Gulunay, 1990) and the minimum resolvable k′-difference, k′diff,
is given by

k′diff =
2π

N1y
. (46)

The resolution is higher if N1y is larger (the aperture is larger).
Since for the discrete Fourier transform1k′ = 2π/N1y, this is
related to a smaller 1k′. Therefore, the resolution in principle
is also higher if 1k′ is chosen smaller.

In Figure 12, on the right-hand side, the response is shown
without diagonal stabilization and for several choices of 1k′.
For the experiment 40 offsets were used, 1x= 25. By using
a limited k′-range (number of estimated k′-values= 17) and
double precision computations, 1k can be chosen as small as
1k′ = 0.51k′a without need for stabilization. It is clear that the
resolution improves for smaller 1k′.

Resolution in case of diagonal stabilization

If diagonal stabilization must be used, then the result is dif-
ferent (see Figure 12, left-hand side). The stabilization factor
is 1% of the main diagonal (very similar results are obtained
within the range 0.001–5%). Now the resolution remains the
same for smaller 1k′. This can be explained by the fact that
with diagonal stabilization, data are not reconstructed in the
introduced gap; consequently, the aperture is not larger for
smaller 1k′ and the resolution does not increase.

Instead of diagonal stabilization, other ways of stabiliza-
tion may be used. Sacchi and Ulrych (1995) use a stabiliza-
tion method especially focused on improving the resolution.

FIG. 11. Reconstructed data with 1k′ = 0.751k′a and diagonal
stabilization.
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674 Schonewille and Duijndam

By forcing a certain sparseness in the transform domain, the
smearing from the finite aperture can be reduced, giving higher
resolution. This makes the method especially suited for filtering
multiples that have almost the same curvature as the primaries
and for extrapolating offsets. The results of the method de-
pend on how much the events smear in the transform domain
from, e.g., AVO effects, and how many events with different
curvatures exist in the time window used. On the down side,
this method is computationally more expensive; therefore, the
parabolic Radon transform with diagonal stabilization will be
a more economic choice if the curvature of the multiples is not
very close to the curvature of the primaries and when recon-
structing missing offsets.

PARABOLIC RADON TRANSFORM WITH
FREQUENCY-DEPENDENT ∆Q

If no stabilization is used, then 1q= 2π/[ω(x2
max− x2

min+
1x2

a)] as given in equation (33) is a good choice for the sampling
interval in the transform domain.

In combination with diagonal stabilization, the 1q can be
made slightly smaller to obtain the best data fit. From a num-
ber of numerical experiments we have found that 1q= 2π/
[ω(x2

max − x2
min + 41x2

a)] is a good choice for the sampling
interval (the introduced gap is then four times the actual gap).
A further reduction of1k will not give a better data fit or higher

FIG. 12. Response of single curvature event with diagonal
stabilization (left) and without stabilization (right) for 1k′ =
β1k′a=β[2π/(Ya +1ya)] [see equation (35)], with β = 1,
0.75, 0.5 (from top to bottom).

resolution (under the assumption that the maximum q-range
is estimated).

It is interesting to analyze the choice of the sampling inter-
val for the conventional parabolic Radon transform. By us-
ing a constant 1q, based on ωmax [see equation (9)], it fol-
lows that for ω¿ωmax the introduced gap becomes very large.
If ω= 0.5ωmax, then this 1q is only approximately half of
1q∝ (1/ω) proposed above, and the introduced gap is larger
than the actual aperture. Moreover, the number of q-values to
cover the calculated q-range is approximately twice as large as
with 1q∝ (1/ω).

Using the parabolic Radon transform with 1q∝ (1/ω)
means that (1) for lower frequencies the number of q-values to
be calculated is smaller and (2) the complete transform is in-
dependent of frequency and the computation of the parabolic
Radon transform is equal to the computation of the least-
squares nonuniform Fourier transform. As a consequence,
computationally more efficient algorithms can be used, as will
be shown in the next section. Filtering of multiples with these al-
gorithms is similar to dip filtering in the f -k domain. With these
algorithms a transformation to (τ,q) is only possible after an
interpolation in the transform domain such that a constant1q
is obtained.

EFFICIENCY

The sequence of forward parabolic Radon transform, fil-
tering in the transform domain, and inverse parabolic Radon
transform can be written as

d f = LF(LH L+ α2I)−1LH d, (47)

where F is a diagonal matrix representing the filtering in the
transform domain. These computations are done for each tem-
poral frequency; therefore, a forward and inverse Fourier trans-
form along the time direction is required. The total computa-
tional costs, however, are dominated by the computations for
each temporal frequency.

Now the following major computational steps can be
recognized:

1) Direct forward transform b=LH d,
2) Computation of the operator H=LH L+α2I,
3) Solving the system Hm̂= b, and
4) Direct inverse transform d f =Lm̂.

The entries of the matrix H are given by

Hmn =
N∑

l=1

exp
(

j (m− n)ω1qx2
l

)+ δmnα
2, (48)

where δmn is the Kronecker delta function. Kostov (1990) rec-
ognized the Toeplitz structure of this matrix for the parabolic
Radon transform and proposed the Levinson scheme [cost:
O(M2)]. For larger systems the Toeplitz-conjugate-gradient
scheme (Strang, 1986) can be faster [cost: O(M log M)]. Since
the Toeplitz matrix is also Hermitian, one row or column de-
termines the complete matrix. Calculating one row or column
is actually a nonuniform discrete Fourier transform.

The direct transforms are also nonuniform discrete Fourier
transforms; consequently, the first, second, and fourth steps
can efficiently be calculated using the nonuniform fast Fourier
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Parabolic Radon Transform 675

transform (FFT) (see Dutt and Rokhlin, 1993; Beylkin,
1995; and Duijndam and Schonewille, 1999), as proposed by
Schonewille and Duijndam (1997) and used by Beylkin (1998),
who gives an example where the gain in computation speed is
a factor of 3.5.

By using1q∝ (1/ω), the following advantages are obtained.
The Toeplitz operator becomes independent of frequency and
is calculated only once. Furthermore, the nonuniform FFT is
initialized only once. The computations for each frequency slice
are now

1) Direct forward transform: nonuniform FFT, evaluation
only,

2) Solving the system Hm̂= b, and
3) Direct inverse transform: nonuniform FFT, evaluation

only.

Since the initialization of the nonuniform FFT costs approx-
imately as much as the evaluation, the gain in efficiency for
steps 1 and 3 is approximately a factor of two. Using1q∝ (1/ω)
also improves the efficiency of step 2 since for lower temporal
frequencies the number of estimated q-values is smaller (see
Figure 3) and therefore the system to be solved is smaller. For
step 2, the gain in efficiency is approximately three times for
an O(M2) scheme and more than two times for an O(M log M)
scheme. Because the different steps are at least two times faster,
we can conclude that the complete scheme is also at least a fac-
tor of two faster than without using 1q∝ (1/ω).

Although with 1q∝ (1/ω), or constant 1k′, the operator
does not directly depend on the frequency, we do vary the k′-
range of the reconstruction (see Figure 3). Still, the operator
H must be computed for largest k′-range (highest frequency)
only, since for smaller k′-range (lower frequency) simply a part
of this matrix can be used.

The k′-range does not change for each temporal frequency
slice (except in the case of a very large M); therefore, it is
possible to compute the inverse of the matrix once for each
k′-range. Inversion of the system (step 2) becomes a multi-
plication of the inverse matrix with b. This is also an O(M2)
operation but is twice as fast as the Levinson recursion. For
larger systems this multiplication can be done more efficiently
[cost: O(M log M)] using the Gohberg-Semencul formulations
[see Strohmer (1994) and references cited there].

Precomputation of operators

If a number of data gathers with the same geometry must
be transformed, then precomputation of operators can be ef-
ficient. This method requires precomputation of the forward
transform operator (LH L + α2I)−1LH and the inverse trans-
form L. After the operators have been computed, for each fre-
quency slice the only computations are complex matrix vector
multiplications [O(M N) operations]. Filtering can be done by
applying band-limited forward and backward operators (Kabir
and Verschuur, 1993).

Using a 1q∝ (1/ω), the operators do not have to be com-
puted for all frequencies but only for a limited number (using
the pie-shaped spectrum, Figure 3). Typically this means that
the precomputation of the operator is not the dominant com-
putational step and can be repeated for each data gather, thus
giving better quality in case of irregular sampling.

Data reduction

A dramatic efficiency improvement can be obtained if the
parabolic Radon transform with 1q∝ (1/ω) is combined with
data reduction that can be described as a linear operator. Ex-
amples are stacking, selecting a common offset, or filling in
missing traces. Equation (47) can be written as d f =Td with

T = LF(LH L+ α2I)−1LH . (49)

Suppose the data is to be stacked. Since stacking is a summation
over the spatial coordinate of d f , it is equivalent to the inner
product with vector s = [1, . . . , 1]T :∑

df = sT d f = (sT T) d. (50)

Now sT T is a row vector, which reduces the combination of
parabolic Radon transform and stacking to a weighted stack.

The total cost is a vector inner product for each frequency
component plus the calculation of the operator sT T, and the
Fourier transforms along the time direction. The operator can
be calculated very efficiently by noticing that

sT T = (TH s)H = (L(LH L+ k2I)−1FH LH s)H , (51)

which is similar to the calculations for one frequency in the
complete parabolic Radon transform scheme, and can be
solved using nonuniform FFTs and any of the Toeplitz solvers.
Because1q∝ (1/ω) is used, the operator is independent of fre-
quency and is calculated only once. The total costs are less than
the costs of the complete parabolic Radon transform by an or-
der of magnitude (but of course the complete scheme yields
full prestack data).

For selection of a common offset and filling in missing traces,
the direct transformation back has only to be done for the rel-
evant offset(s). The total cost is again the calculation of the
operator once plus one vector inner product for each recon-
structed offset or missing trace for each frequency.

EXAMPLE

The parabolic Radon transform with 1q∝ (1/ω) and the
conventional parabolic Radon transform have been applied to
an acoustic finite-difference data gather. The laterally invariant
subsurface model consists of five layers with velocities [1500,
2000, 2500, 3200, 4200] m/s and density [1000, 2000, 3000, 3300,
3800] kg/m3. The interfaces are at [300, 700, 1000, 1400] m. In
Figure 13 the data are shown after NMO correction and stretch
mute. The primaries are at [0.39, 0.79, 1.03, 1.28] s.

The sampling interval in the transform domain is chosen
as 1q= 2π/[ω(x2

max − x2
min + 41x2

a)] for the parabolic Radon
transform with 1q∝ (1/ω) and 1q= 2π/[ωmax(x2

max− x2
min+

41x2
a)] for the conventional parabolic Radon transform with

ωmax/2π = fmax= 60 Hz.
For both methods the estimated curvature range corre-

sponds to a moveout at the largest offset from −70 to 160 ms.
In principle this leads to a pie shape in the (k′, ω) domain (see
Figure 3) with a k′-range that is zero at ω= 0. Consequently,
only one k′-value would be estimated for the parabolic Radon
transform with 1q∝ (1/ω). To improve the handling of low
temporal frequencies for the parabolic Radon transform
with 1q∝ (1/ω), the curvature range is extended by 21q
on both sides (such that for ω= 0, the q-range is 51q). It
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676 Schonewille and Duijndam

was verified that the curvature range used was smaller than
{[(x2

max− x2
min)/1x2

a]+ 2}1q.
For the multiple elimination, the primaries between−70 and

20 ms are muted, and the multiples are transformed back to the
spatial domain and subtracted from the primaries.

In Figure 14 the data are shown after multiple filtering us-
ing the parabolic Radon transform with 1q∝ (1/ω) and in
Figure 15 after multiple filtering using the conventional para-
bolic Radon transform. Because the sampling in the transform
domain varies between the methods, the threshold between
the primaries and the multiples will also be slightly different
for both methods. Usually differences will be very small and
not inherent to the method.

The residuals for both methods are calculated by doing a
forward and backward transformation without a mute of the
primaries and subtracting the result from the original data. In
Figure 16 the residuals are shown for the parabolic Radon
transform with 1q∝ (1/ω) and in Figure 17 for the conven-
tional parabolic Radon transform. The data are scaled up by a
factor of 10. The residuals for the parabolic Radon transform
with 1q∝ (1/ω) are clearly smaller, which is mainly because
the estimated k′-range using the parabolic Radon transform
with 1q∝ (1/ω) is larger than for the conventional parabolic
Radon transform. For higher frequencies, the difference be-
tween the k′-ranges is relatively small, and the k′-range is large
enough for both transforms. For the lowest temporal frequen-
cies, the k′-range for the conventional parabolic Radon trans-
form is very small. It is also possible to enlarge this range
for the conventional parabolic Radon transform (except for
ω= 0); but because of the very small sampling interval (from
the Fourier point of view, see Figure 3), a very large number of
parameters must be estimated.

FIG. 13. Finite-difference data after NMO and stretch mute.

CONCLUSION

We have shown that for each temporal frequency compo-
nent the least-squares parabolic Radon transform is equiva-
lent to the least-squares nonuniform Fourier transform, which
provides new and useful insights into the parabolic Radon
transform.

Using nonuniform Fourier theory the sampling interval in
the transform domain for the parabolic Radon transform has
been studied. A critical value for the sampling interval is
1q= 2π/[ω(x2

max− x2
min+1x2

a)]. If 1q is chosen larger, then
wraparound and edge effects occur and the data fit is decreased.
If 1q is chosen significantly smaller, then stabilization is re-
quired. In combination with diagonal stabilization, 1q can be
reduced slightly for the best data fit, and we propose to use
1q= 2π/[ω(x2

max− x2
min+ 41x2

a)]. A smaller1q does not yield
a higher resolution or better data fit and leads to a larger matrix
to be inverted for the same curvature range.

The theoretical maximum curvature range that can be
estimated is N1q, but stability will decrease beyond
{[(x2

max− x2
min)/1x2

a]+ 2}1q. Estimating a significantly larger
q-range while using diagonal stabilization to handle instability
leads to smearing of energy. This smearing of energy is caused
when the reconstructed signal is forced to zero between the
traces at large offsets. If the offset coordinate is sparsely sam-
pled, then by using a limited offset range for higher tempo-
ral frequencies the q-range can be enlarged without instability
problems.

The efficiency of the parabolic Radon transform can be im-
proved by using a1q∝ (1/ω), which makes the complete trans-
form independent of frequency, and by using the nonuniform
FFT. Using1q∝ (1/ω), operators can be precomputed for each
gather, taking into account the exact locations of the samples
and therefore yielding better quality with only a very small
increase of computational costs. If the parabolic Radon trans-
form with 1q∝ (1/ω) is combined with data reduction, very
fast schemes are possible.

Using 1q∝ (1/ω) means that the data cannot be trans-
formed directly to (τ,q); an interpolation in the Radon domain
is required.

The parabolic Radon transform with 1q∝ (1/ω) has been
compared with the conventional parabolic Radon transform in
a synthetic example. As expected, the quality of the multiple
elimination is approximately equal, where the residuals of the
parabolic Radon transform with1q∝ (1/ω) are smaller thanks
to a larger curvature range for low frequencies.
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