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problem of scaling ViT-MAE models trained on seismic data to a 
global corpus of 63 seismic surveys. And evaluate if a subsequent 
downstream task can be efficiently fine-tuned from these large 
pre-trained models to outperform existing AI methods regarding 
their generalisation capacity.

As we train large models, data management becomes a crucial 
enabling technology, both in need of exploring and curating such 
a large corpus of data and efficiently saturating large clusters of 
GPU computing required to train them in a timely manner. Track-
ing this problem on seismic data presents unique challenges. We 
will explain how cloud object storage and the MDIO seismic 
data format [Sansal 2023] are used efficiently in pretraining a 
660M parameter 3D seismic ViT-H model. We will address the 
model’s usefulness by fine-tuning it for salt interpretation. The 
salt interpretation model builds on our SaltNet dataset, consisting 
of interpretation from 23 seismic volumes, and we will compare 
model IoU scores with existing state-of-the-art 2D and 3D U-Net 
models [Warren 2023, Roberts 2024].

Methodology
Model Architecture
The model architecture shown schematically in Figure 1 is based 
on a Masked Autoencoder (MAE) with a Vision Transformer 
(ViT) backbone, as described by He et al. [2021], modified to 
process 3D seismic volumes. Input seismic data is divided into 
overlapping mini-cubes, which undergo augmentations such as 
inline/crossline flips. The model adapts the ViT-MAE design 
initially created for 2D images to 3D, projecting 163 patches 
(visual tokens) to a collection of 1280-length vector embeddings. 
At each training step, a batch of mini-cubes is selected from the 
global dataset, 90% of the patches are masked, and the remaining 
10% is used to reconstruct the original mini-cube. The learning 
objective is the pixel space reconstruction accuracy of the masked 
patches using the mean-squared error (MSE) metric.

One advantage of this self-supervised training is that it is 
memory-efficient since all the data is used only in the small 
decoder of the model loss. The large encoder only has to propa-
gate 10% of the patches. This approach is highly scalable to large 
model sizes without complex distributed training techniques. An 
advantage of working in the 3D domain of the data over 2D is 
that a more significant percentage of the data, 90% in this case 
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Traditional workflows using machine learning interpretation of 
seismic data rely on iterative training and inference on single 
datasets, producing models that fail to generalise beyond their 
training domain. Self-supervised training and scaling of 3D vision 
transformer (ViT) architectures enables seismic interpretation 
with improved generalisation across diverse datasets. We address 
the complexities of large-scale training on a global dataset of 63 
seismic volumes using the masked autoencoder (MAE) architec-
ture with the ViT-H model consisting of 660 million parameters. 
We leverage a cloud-native, digitalised seismic data infrastructure 
to address the data engineering challenges, avoiding duplication. 
For a downstream task, a salt segmentation model trained 
using interpretation labels from the Gulf of Mexico and Brazil 
demonstrated zero-shot generalisation on a West African survey. 
These findings underscore the potential of pre-trained foundation 
models to overcome the limitations of iterative approaches and 
extend seismic interpretation across diverse basins, marking 
a significant advancement in scalable machine learning for 
subsurface challenges.

Introduction
The pre-trained ViT-MAE model is an emerging technology in 
seismic processing and interpretation [Lasscock 2024, Sheng 
2023]. Much like how large language models have been a step 
change in natural language processing, there is potential for this 
new way of approaching AI to disrupt geophysical applications. 
Until now, these studies have been applied to small, open-source 
datasets with synthetic data and older seismic imaging and 
processing techniques. [Ordonez 2024] reported an expansive 
study that high-graded a subset of 60,000 2D crops for pretraining 
from a larger 20 survey dataset. In each case, these studies have 
demonstrated the efficacy of pre-training a seismic foundation 
model (SFM) and then using or fine-tuning it on various down-
stream tasks, including seismic salt and facies classification.

The highly scalable characteristics of the ViT-MAE technol-
ogy, mainly when applied in 3D [Lasscock 2024], have yet to be 
explored in geophysical literature. In computer vision, it has been 
established [Zhai 2022] that larger models pre-trained on large 
datasets (ImageNet-21k and JFT-300M) achieve better perfor-
mance in image classification tasks. This study aims to tackle the 
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has a total of 660M trainable parameters. On the other hand, the 
decoder is a smaller transformer with eight layers, 16 attention 
heads, and a feedforward network size of 2048.

The context size of the model is the number of 163 patches 
(visual tokens) the model can attend to in a mini-cube. The larger 
the context size, the greater the geological context the model 
can see, which is important for local and global features. Once 
pre-training is complete, we fine-tune the model’s context size 
to accommodate larger seismic mini-cubes. Pre-training is done 
with 5123 mini-cubes, equivalent to a context size of 32,768. 
Once pre-training is complete, we fine-tune the model using 
640x640x1024 seismic mini-cubes to achieve a context size of 
102,400. This means that, based on the bin spacing of the seismic 
data, the model sees approximately 8-16 km in the lateral direc-

[Feitchtenhofer 2022], can be masked during training. Masking 
90% of the data reduces the memory overhead of training and 
thereby makes the model more scalable. An example of the 
pre-training is shown in Figure 2; the left column shows a set of 
inline, crossline, and depth sections from an input mini-cube. The 
middle column shows a random collection of 163 patches input 
to the model, and the right column shows the reconstruction. 
We see qualitatively that the model can reconstruct fine details, 
including faults and truncations, even from a minimal subset of 
the input data.

The encoder trained in this study is a generic transformer 
architecture with a depth of 32 layers, 16 attention heads, an 
embedding vector size of 1280, and a feedforward dimension 
of 5120, equivalent to ViT-H model in the literature. This model 

Figure 1 A modified schematic view that explains 
the ViT-MAE pre-training concept [He 2021] is shown 
in the picture. Large 3D data patches are loaded 
in batches, 90% of the data is discarded, and the 
remaining 10% is used to reconstruct the original data 
from the mask tokens.

Figure 2 A specific example of a sampled 
640x640x1024 mini-cube and its reconstruction. (a-c) 
A mid-point inline slice through the 3D patch showing 
the original data, the data used in reconstruction, and 
the reconstructed 3D patch. (d-f) and (g-i) show the 
equivalent crossline and depth slices, respectively.
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mini-cube sampling by 50% to achieve 12 billion visual tokens 
that augment positional information.

Although the scaling laws of ViT models are not explored 
in seismic data, studies into vision transformers on natural 
images suggest that larger models achieve higher accuracy when 
fine-tuned on image classification tasks and that larger datasets 
are beneficial when training large models. However, even with 
limited data, the large models, although requiring more compute 
resources, perform better than smaller models [Zhai 2022]. For 
reference, as of the time of writing, the largest published ViT 
model is ViT-22B, a 22 billion parameter ViT model [Dehghani 
2023], which was trained on a proprietary dataset of approximate-
ly 4 billion images with 256 visual tokens per image.

The computational cost of pre-training the 3D ViT-MAE 
model with our configuration is approximately 976 A100 core 
days, which is significant. For large context fine-tuning, 244 more 

tion and 5-10 km in the depth direction. The context fine-tuning 
has been done on the same hardware.

Pre-training dataset
This study aims to scale the ViT-MAE concept to a global 
geological context. For this reason, we assembled a corpus of 
63 seismic surveys, sampled from around the world, to use in 
pretraining. The spatial region, expanding the surveys in the pre-
training dataset, is shown in Figure 3. Table 1 summarises the size 
and contribution to the training data from each region. We train 
on depth-migrated final stacks, which have been imaged with 
either reverse time migration (RTM) or Kirchoff depth migration 
(KPSDM). This dataset has 1.8 billion 163 patches (visual 
tokens) without overlap. For comparison, our dataset contains an 
equivalent of 293 million 224x224 2D inline and crossline subset 
images without augmentation and decimation. We also overlap 

Figure 3 A view of 3D post-stack seismic data in our data library. (red) The 63 surveys we sampled from around the world are included in pre-training.

Table 1 The dataset size by region by file size in GB 
and project area in sq km.

Region File Size (GB) Survey Area  
(sq km)

Number of 
Surveys

Africa 3,603 91,438 11

Asia 668 12,285 3

Australasia 1,194 36,622 3

Canada 1,910 17,900 3

Europe 1,284 14,713 2

Gulf of Mexico 4,894 106,227 26

South America 6,765 164,394 9

Onshore USA 124 1,130 5

Total 20,444 444,710 63
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We use Dask [Dask Development Team 2016] for mul-
ti-process read operations, MDIO as a file format, and the 
MDIO library to access the data with relevant metadata. This 
is integrated with PyTorch [Paszke 2019] datasets to provide 
high-performance I/O, which allows us to keep the GPU cluster 
fully utilised during training.

In summary, combining these technologies means that all 
the independent mini-cubes in our data corpus can be randomly 
sampled into batches and used in training without creating an I/O 
bottleneck.

Downstream task: Salt interpretation
To demonstrate the usefulness of the pre-trained model, we 
train a new decoder for the pre-trained foundation model for 
salt segmentation. Examples of downstream tasks relevant to 
geophysics are summarised by [Sheng 2023]. In this study, we 
fine-tune using an expanded version of the salt interpretation 
dataset previously used for training salt segmentation U-Net 
models in 2D and 3D in Roberts [2024] and Warren [2023]. This 
dataset consists of salt annotations from 20 reverse time-migrated 
depth stacks from the Gulf of Mexico. For this study, we have 
added four new interpreted RTM stacks from South America 
for training and another interpreted RTM stack from Africa for 
testing (out-of-domain). A ground truth salt label is a binary mask 
derived from interpretations carried out by expert geophysicists.

As in pretraining, the salt labels are stored in MDIO format. 
The survey geometry and other metadata are consistent between 
the seismic labels and underlying seismic data, which is essential 
for correct training. Both labels and data are accessible in place, 
removing the need for data duplication.

A100 core days are added, totaling 1220 A100 core days. We 
pre-trained the model using a cluster of A100 GPUs for this study. 
Keeping the GPUs sufficiently utilised is a critical requirement 
that makes training a large seismic foundation model on a global 
scale feasible. Another crucial requirement is that we can co-lo-
cate the data with the computer. Otherwise, repeated sampling of 
this data throughout training would also be inefficient.

This study was made possible by accessing an extensive 
library of multi-client seismic data hosted on the cloud. A 
key feature of the data library is that all data is accessible in 
place, which means that any data in the library can be utilised 
in training without duplication or any additional overhead of 
discovery or preprocessing. A key enabling technology is the 
MDIO open-source format for seismic data [Sansal 2023]. MDIO 
has the advantage of providing lossless data compression, which 
minimises network traffic, and more importantly, it is a chunked 
data format compatible with native cloud storage. Each stack is 
arranged as a collection of 1283 chunks on a cloud bucket.

The network architecture of the model was chosen to align 
with the 3D domain of the post-stack data, removing the need to 
sample data in 3D and then make an arbitrary 2D slice, conse-
quently reducing the I/O overhead. When the model training steps 
iterate, it samples batches of large amounts of data in desired 
chunks from surveys across the globe. For example, to fit three 
5123 mini-cubes on an 8 GPU node (24 total batch size per node), 
we are fetching 12GB of seismic data samples at each iteration. 
Since we are working with 3D data, chunked data formats like 
MDIO are significantly more capable than sequential formats like 
SEG-Y, which require indexing and orders of magnitude more 
requests to read a mini-cube.

Figure 4 Offshore Africa: (top red) the raw and 
unprocessed salt label prediction masks for an inline 
and crossline section, respectively. (bottom blue) The 
ground truth labels. Guidelines indicate the location 
of the other orthogonal slices shown for this volume.
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both previous ML salt interpretation studies [Roberts 2024 and 
Warren 2023], the prediction is evaluated on held-out volumes 
but within the area where the model is trained. Figures 4 and 
5 show example prediction versus ground truth salt masks for 
the African dataset. The IoU score of 0.83 is consistent with 
the state-of-the-art results of (0.84, 0.96) for the two GoM 
datasets evaluated by [Roberts 2024] using 3D U-Nets. The 
result indicates that we can realise excellent generalisation 
of the salt model outside of the basins where it has been 
trained in the case where the underlying dataset was included 
in pretraining. We also expect strong few-shot generalisation 

The salt classification network architecture consists of a frozen 
pre-trained encoder (weights do not need to be updated) with a 
transformer decoder and a single layer as a classification head. 
The model’s performance is evaluated in terms of intersection over 
union (IoU); this gives an immediate comparison with metrics used 
in previous studies [Roberts, 2024; Warren, 2023; Sheng, 2023].

Results
To evaluate the performance of the fine-tuned model on salt 
interpretation, an RTM stack offshore South America is held out 
in both pre-training and for salt classification. This provides a 
performance comparison analogous to [Roberts 2024 and Warren 
2023], where data is held out in the region where the model is 
trained. To evaluate the potential for the SFM to aid the geologic 
region generalisation of the salt model, an interpreted stack 
offshore Africa is used in pre-training but held out in creating 
the salt model. Table 2 shows the intersection over union (IoU) 
metrics used to score the model’s performance.

With the held-out African dataset, we can test the efficacy of 
applying the model outside the basin in which it was trained. In 

Figure 5 Offshore Africa: (left red) is the predicted 
depth slice salt mask. (right blue) The associated 
ground truth. (cyan and green lines) The location of 
the inline and crossline sections is shown in Figure 4.

Metric Africa -  
hold out

South America - 
hold out

IOU (mean) 0.90 0.96

IOU (foreground) 0.83 0.93

IOU (background) 0.97 0.99

Table 2 Performance metrics for Africa and South America hold out datasets.

Figure 6 As in Figure 4, but for Inline and crossline 
sections from the held-out South American dataset.
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where it was trained. This aligns with state-of-the-art CNN-based 
approaches when the ML models are trained and applied to the 
same basin.

We have demonstrated a highly scalable method of training 
a seismic foundation model. This work establishes a framework 
for leveraging large-scale data and cutting-edge architectures for 
training seismic foundation models, which is scalable beyond a 
1-billion parameter model.
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across new areas, achievable with minimal labels and fine- 
tuning.

Figures 6 and 7 show analogous examples of salt classifica-
tion in South American data. This survey was not included in the 
pre-training or the salt model training. The IoU of 0.93 is at the 
high end of the range obtained by [Roberts 2024]. This indicates 
that the ViT-based self-supervised model achieves state-of-the-art 
performance as seen in the GoM-only U-Net models but is trained 
across two basins, the GoM, and South America.

Conclusions
This study demonstrates the transformative potential of scaling 
the Vision Transformer architecture with the Masked Autoen-
coder training technique (ViT-MAE) to seismic data, achieving 
state-of-the-art performance in salt segmentation tasks. We 
highlight the advancements made possible by pretraining a 
660-million-parameter model on a global dataset of 63 seismic 
surveys through efficient data handling and model scalability. The 
MDIO format enabled high-throughput access to large seismic 
datasets stored on the cloud, ensuring efficient large-scale data 
delivery to utilise the power of A100 GPUs during pretraining. 
This infrastructure is a key enabler of scaling, allowing efficient 
data management for training large-scale models.

Working in 3D allowed us to use a 90% masking ratio, 
further enhancing scalability by reducing memory overhead in 
pre-training and enabling the larger models for a given GPU 
footprint. This approach effectively reconstructs fine geological 
details from sparse inputs, showcasing its power in handling 3D 
seismic data.

Achieving an IoU of 0.83 on a held-out African data and 0.93 
on the held-out South American data, the salt segmentation task 
model demonstrates exceptional generalisation beyond the basins 

Figure 7 As in Figure 5, but for the depth slices for the held-out South American 
dataset.




