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In the current data analytics landscape of artificial intelligence, machine 
learning, and multi-variate modeling, a key differentiator of a determinative 
model is the quality and scope of the input data. Predicting well performance 
with a high level of accuracy requires not only well production and completion 
data, but also high-fidelity geologic data differentiating well landing  
zones and reservoir quality. TGS, with an industry leading, high-quality, 
comprehensive log library, is uniquely positioned to provide the geologic 
context for the next generation of multi-variate predictive models and 
subsurface interpretations.

However, correlating and interpreting well logs are necessary, labor-intensive tasks  
for building large scale stratigraphic models used in multi-variate analytics, geomodeling, 
and reservoir simulation workflows. Aside from the high resource and time constraints, 
manual correlation and interpretations can also vary from interpreter to interpreter and 
often do not make use of all well and log data available. These workflows often require 
interpreters to focus on fine-scale details in a limited number of logs, making it challenging 
and time-consuming to assess the large-scale structure of the subsurface. Furthermore, 
generating accurate 3D property and stratigraphic volumes from well log data, especially 
in horizontal sections of producing formations, faces obstacles such as data quality 
variability, lateral reservoir variability, and the complexity of accurately modeling these 
variations. There is a clear need for automation to improve efficiency and reproducibility. 
Various approaches have been proposed to automate geological boundary detection 
from well log data. Dynamic Time Warping (DTW) and artificial intelligence (AI) are promising 
concepts for correlating signal sequences and extending to the domain of geology for 
well-to-well correlation (Zoraster et al., 2004; Lineman et al., 1987; Smith and Waterman, 
1980; Le Nir et al., 1998; Baldwin et al., 1989; Luthi and Bryant, 1997; Po-Yen Wu et al., 2018; 
Brazell et al., 2019; Tokpanov et al., 2020). 

STUDY AREA 
The study area of interest (AOI) is the Midland Basin, 
spanning Glasscock, Howard, Martin, and Midland 
counties. We use an extensive dataset of approximately 
30,000 vertical and 6,550 producing horizontal wells 
(Figure 1). The Midland Basin’s size, complex geology, 
stacked pay zones, and variable lithologies make  
extensive manual interpretation prohibitively expensive 
and therefore a good test case for this workflow.  
The ChronoLog (Sylvester, 2023) methodology  
requires an initial input set of interpreted formation  
tops to constrain the well log correlation. We select 
interpreted formations tops that provide the largest  
span of our 3D property generation spatially and  
in-depth; these include the Rustler, Bone Spring/Upper 
Spraberry, Wolfcamp, Strawn, Devonian Carbonate,  
and Ellenburger.

Figure 1: Map of well locations in the Midland Basin, covering Glasscock, 
Howard, Martin, and Midland counties, indicating vertical and horizontal wells.
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METHODOLOGY 
Data Selection and Pre-processing 
Our well data preprocessing pipeline starts with automated data cleaning. It comprises 
curve categorization, verification of information, splicing, merging, depth shifting,  
normalizing, and quality editing. The gamma-ray curves are also standardized to an interval 
from 0 to 1, an important step when evaluating numerical well-to-well correlation and for 
the following well-curve imputation step. To maximize the collection of available well data, 
we fill in missing log curves on the clean well data using a predictive Analytics-Ready LAS 
(ARLAS) model (Gonzalez et al., 2023) trained specifically for the Permian Basin.  
Using ARLAS, a consistent collection of five log curves are available in every interpreted 
well: the bulk density, gamma-ray, neutron porosity, deep resistivity, and compressional 
sonic curves. 

Dynamic Time Warping-Based Well-to-Well Correlation
Chronolog uses a Dynamic Time Warping (DTW)  
algorithm to align well logs based on manually  
interpreted formation tops and normalized gamma-ray 
curves pairwise. This method aligns geological features 
across pairs of well logs, accounting for discrepancies 
in deposition times or layer thickness resulting from 
geological processes. A well connectivity graph is first 
created to reduce the computational overhead of the 
dynamic time warping, which is significant at the basin 
scale. ChronoLog only evaluates pairwise correlations  
for connected nodes in this graph. The edges of this 
graph (Figure 2) represent proximity or relational ties 
to neighboring wells. In parts of the AOI that are well 
covered spatially by interpretation, the graph is cut 
between wells more than 3 km apart. We still attempt  
to include data in parts of the AOI with sparse well 
coverage; here, a Delaunay triangulation creates  
edges between wells, which are not subject to the 3 km 
maximum proximity. The objective is to ensure  
a comprehensive network that facilitates as much  
accurate stratigraphic analysis as possible. 

DTW will always yield a result, even for unrelated sequences. For this reason, we filter the 
set of well pairs based on the normalized DTW cost (Rath et al., 2003) for the pair. For two 
sequences s1 and s2 and with length N1 and N2, this cost is: 

Cnorm = Cost(s1 , s2 )/(N1 * N2 ) 

Figure 2: Well connectivity graph showing pairwise well correlations. 
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After computing this cost across our dataset  
of wells, we identify pairs where the cost is greater  
than the 99th percentile. The network connectivity  
graph is cut for these pairs, and if a well is left  
unconnected from the graph, it is removed from  
the analysis. Using least-squares optimization, 
ChronoLog creates a consistent set of pair-wise depth 
correlations (Wheeler and Hale, 2014). The result is  
a chronostratigraphic diagram that aligns the well  
curves in relative geologic time (RGT) (Figure 3). 

ChronoLog then applies a Continuous Wavelet 
Transform (CWT) and systematically identifies  
stratigraphic boundaries by detecting zero-crossings 
in the wavelet transform, indicating geological feature 
changes (Cooper et al., 2009). This segmentation is 
later used to create aggregated 3D properties across 
the basin. The scale parameter in this method can be 
thought of as the bandwidth of a Ricker wavelet.  
Less fine detail is retained as the scale increases.  
This study uses a setting of 4 samples to produce  
a rich set of stratigraphic layers without additional  
manual interpretation.

Development of 3D Geological Models 
Our workflow does not require every well to contain interpreted tops for every formation. 
Instead, a basin-wide chronostratigraphic diagram is created in a layer cake fashion, 
stacking diagrams and segmented sequences assembled for the Rustler, Bone Spring/
Upper Spraberry, Wolfcamp, Strawn, Devonian Carbonate, and Ellenburger formations.  
For this reason, many of the wells in the dataset may lack certain stratigraphic layers 
identified by ChronoLog. 

A problem with naively filling in the missing sequences by a simple interpolated grid  
is that the result may not preserve the correct sequence. This is particularly relevant  
when geology is structurally complex. Instead, we use an iterative method based  
on interpolating segment thickness relative to a common reference point, as shown 
schematically in Figure 4. The algorithm starts with an established reference point across 
the dataset, and then an interpolated map of segment thickness across the basin is 
computed. This thickness map is then used to forecast the interval of this segment  
in wells where it is missing. The top of the segment becomes the common reference 
point, and the algorithm iterates until consistent segmentation exists in all wells.

With every stratigraphic top identified at each well location and characterized by a high 
spatial density, we can now interpolate depth values and log properties beyond the 
immediate areas surrounding the wells to generate maps with regular grids. This involves 
gridding both the identified stratigraphic tops and the average property values found 
between these tops, which serves as a foundation for building 3D geological models.

Figure 3: Chronostratigraphic diagram illustrating the alignment of well logs 
in RGT, utilizing normalized gamma-ray curves for Rustler formation.
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Figure 4: A schematic depicting the iterative process for interpolating missing formation tops, involving two 
main steps: 1) constructing a thickness grid between identified tops and bases, and 2) applying thickness 
mapping to estimate missing formation tops.

Extended Stratigraphic and Property Model 
Expanding on the initial model, we now include all vertical wells in the dataset, regardless 
of whether their formation tops have been manually identified. By plotting the locations  
of these wells on the stratigraphic grids, we can identify previously missing formation tops 
while using all existing log curve data from those wells. We address gaps in the log curve 
data using the k-nearest neighbors algorithm, creating a comprehensive dataset and a 
complete property model with both formation tops and comprehensive well log data. 

This expanded effort allows us to develop 3D stratigraphic and log property models, 
capturing each vertical well’s known formation top and the log curve data. Following the 
methodology of the initial model, we use spline interpolation to fine-tune the log curve 
attribute grids. This technique ensures that geological features are depicted accurately, 
avoiding overlaps, and ensuring continuity in our models.

CASE STUDY 
In this section, we describe chronostratigraphic diagrams and log correlations generated 
with the automated stratigraphic correlation workflow and highlight their value in interpreting 
geological features. The workflow starts by selecting formations with well-supported 
tops, such as the Rustler, Bone Spring/Upper Spraberry, Wolfcamp, Strawn, Devonian 
Carbonate, and Ellenburger. We limited the distance between well pairs to 3,000 meters 
for correlating wells. With a segmentation scale set at 4, we identified 1,570 stratigraphic 
units for 1,939 wells, which helped us create a detailed gridded model. This setup enabled 
precise spatial analysis. 
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Development of Stratigraphic and Property Models
We developed a 3D geological model using well log data, featuring one stratigraphic volume 
and six property volumes, including normalized gamma-ray, sonic, neutron porosity, 
density, and resistivity. Each property volume offers insights into different aspects of the 
geology. The model is structured as a volumetric array, resembling a stack of layers, each 
representing a geological layer or formation (Figure 5b). This setup, visualized in Figure 5a, 
assigns a specific X-Y-Z coordinate to every point in the grid. We chose a 50-meter spatial 
resolution for the X and Y axes to balance detail with computational efficiency. To validate 
the accuracy of our 3D models, we generated synthetic logs for vertical wells within the 
AOI. We calculated the normalized Root Mean Square Error (RMSE) against the existing 
ARLAS logs. An example log track of a selected well in Figure 6 displays a comparison 
for the neutron log, with ARLAS logs in blue and synthetic logs in red. Validation focused 
on depth intervals with overlapping signals, showcasing the synthetic logs’ capability to 
reconstruct a continuous signal throughout the wellbore. The findings show a normalized 
RMSE between 10–15% across all compared well logs, indicating a relatively close match.

Figure 5: (a) 3D gamma ray model; (b) Map view showing  
the Wolfcamp formation top, represented as a stacked 2D  
layer within the stratigraphic volume.

Figure 6: Log track comparison between synthetic logs (red)  
and ARLAS (blue) for a selected well.
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Figure 7: Diagrams showcasing well log data extraction from horizontal wells for reservoir analysis. (a) 3D gamma-ray volume analysis, 
(b) median gamma-ray values in producing wells, and respective (c) formation names.

Deriving Log Data for Horizontal Wells in Reservoir Analysis 
Extracting log data from horizontal sections of wells is a critical step in understanding  
and evaluating reservoirs. This process provides key insights that help make informed 
decisions to optimize production, manage reservoirs effectively, and improve profitability. 
To do this, we rely on two main data sources: directional surveys (DS), which give us  
the X-Y coordinates for the paths of horizontal wells, and a set of 3D models of the 
stratigraphy and property data from well logs (Figure 7. a - 7. c). Using the X-Y coordinates 
obtained from DS, we map and collect the log curve data and the stratigraphic tops for 
horizontal wells from the 3D models. We compute a comprehensive statistical analysis  
on these sections to determine critical metrics such as the 2nd and 98th percentiles, 
median, minimum, maximum, and average log responses (Figure 7b). This approach  
allows the statistical analysis of any curve attributes, including petrophysical properties,  
at any X-Y-Z coordinate.
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CONCLUSIONS 
This case study presents a comprehensive overview of the advanced 3D geological  
modeling and ChronoLog automated stratigraphic correlation pipeline employed to 
develop a geologic model of the Midland Basin’s subsurface geology. These technologies 
and workflows have enhanced the accuracy and efficiency of constructing 3D stratigraphic 
and property models. The resulting interpretation is being evaluated or is currently being 
used across various workflows. Geological properties from this model are extracted and 
aggregated across the producing interval of actual and proposed horizontal wellbores 
for use in multi-variate statistical models to benchmark and predict well performance. 
Additionally, delineated formation horizons are cross-referenced with directional surveys 
to assign production to detailed benches and landing zones. Furthermore, the full 3D 
geologic volumes from this model are used to populate geomodels for well planning, 
geosteering, detailed reservoir studies, and reservoir simulations. 
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