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Accelerated regional stratigraphic framework 
building for subsurface CO2 storage assessment
Sougata Halder1*, Keyla Gonzalez1, Alex Fick1, Vi Ly1, Ben Lasscock1, Zoltan Sylvester2 and 
Cameron Snow3 present a novel workflow for developing a basin-scale stratigraphic 
architecture for defining the major saline reservoirs and sealing units within a basin.

Introduction
Carbon Capture and Storage (CCS) is a proven and safe 
technology that involves capturing (purifying) carbon dioxide 
(CO2) released from point emission sources or directly removed 
from the atmosphere, compressing it for transportation and then 
injecting it into a carefully selected subsurface reservoir for 
permanent storage. The success of CO2 storage relies heavily on 
the identification and characterisation of suitable subsurface res-
ervoirs for secure and permanent storage. Geologic formations, 
whether they are depleted hydrocarbon or deep saline reservoirs, 
present unique challenges and opportunities for CO2 storage. 
The advantages of saline reservoirs over depleted hydrocarbon 
reservoirs include potential access to a large volume of available 
pore space, and a smaller number of well penetrations, which 
results in reduced risks of potential leakage pathways through 
these wells. However, the lack of comprehensive reservoir data 
in saline reservoirs increases uncertainty in defining reservoir 
confinement, cap rock integrity, and fluid flow behaviour. There-
fore, saline reservoir storage assessment requires comprehensive 
reservoir characterisation and modelling to be carried out before 
large-scale CO2 storage planning is possible.

Some important parameters to consider for subsurface CO2 
storage are depth of injection and density of CO2, which is 
dependent on subsurface temperature and pressure. The density 

of CO2 increases with pressure at temperatures above critical 
conditions (Klins and Bardon, 1991). At about 1084 psi pressure 
and 88°F temperature, CO2 reaches a supercritical state (Qi et 
al., 2010), after which the volume decreases dramatically with 
depth, along with the increase in CO2 density. These conditions 
generally correspond to a depth of around 2600 to 3000 ft. In 
a supercritical state, CO2 acts as a gas-like compressible fluid, 
resulting in complete pore volume utilisation and mobility within 
a reservoir (Ketzer et al., 2012), with a liquid-like density. The 
main advantage of storing CO2 in a supercritical state is that the 
required storage volume is substantially less than what it would 
be at surface conditions (Donaldson, 2021).

Most of the onshore and offshore sedimentary basins in North 
America have sufficient data for subsurface evaluation to identify 
regional fairways for CO2 storage. Integration of geological, 
geophysical, and petrophysical assessment from the well log 
data helps in evaluating deep saline reservoir zones for their 
storage suitability. The initial step in any subsurface assessment 
is to accurately map the geological units at the well level. This 
involves correlating these units along strike and dip-oriented 
sections to understand their distribution and variability across 
the basin. Building a basin-scale stratigraphic framework by 
correlating a large number of geophysical well logs is a crucial 
but labor-intensive process. This task is especially challenging 

Figure 1 Study area across Texas and Louisiana Gulf 
Coast covering CCS lease areas.
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in the study area allows ample opportunity for mapping and char-
acterisation of the key geologic units for subsurface CO2 storage.

Data and methodology
Our subsurface CO2 storage assessment workflow begins with 
saline reservoir definition, which includes identification of the key 
saline reservoir and sealing units and map their distribution within 
the study area, which is the focus of this paper. This is subsequent-
ly followed by the petrophysical characterisation of these geologic 
units for their storage suitability assessment. Figure 2 outlines 
our CO2 storage assessment workflow, with the saline reservoir 
definition highlighted to emphasise the focus of this study.

Regional mapping of the subsurface storage and sealing units 
and defining the depth, thickness of each of these units and map-
ping their lateral continuity, and variability along the basin is not 
a trivial task. Manual attempts for basin-scale well log correlation 
lack the vertical resolution to adequately define individual saline 
reservoirs and their regional and intra-formational sealing units. 
Furthermore, incomplete log coverage from the surface to the 
base of the wellbore in most well locations limits our ability to 
generate a comprehensive, high-resolution stratigraphic frame-
work for a basin. Our semi-automated workflow allows efficient 
regional well log correlation and quality control, providing the 
highest stratigraphic resolution across the basin for identification 
and mapping of the key geologic units within a basin.

Regional stratigraphic mapping
The first step in our storage assessment workflow is to map the 
regional geologic units across the study area. We employed a 
cloud-based web application, which provides integrated data 
management and facilitates easy visualisation and interactive 
mapping of the regional geologic units. We used an extensive 
well-log database, for interpretation and training a machine learn-
ing-generated model, Analytics Ready LAS (ARLAS) (Gonzalez 
et al., 2023), to predict missing logs and/or log intervals within 
the Gulf Coast area. This approach provides a comprehensive 
basin-scale database of quad combo log data (actual and imputed) 
for every well and allows geologists to interpret on any of the 
logs, inferred or actual. This well-log database is integrated into 
the cloud-based application with interactive tools for stratigraphic 
interpretation.

The application enables interpreters to view and interpret 
data from 155,732 digitised well-logs and ARLAS predictions 
by annotating cross-sectional views of the basin. An interpreter 
can visualise up to 1500 wells in a cross-section, with consistent 
colour-coded log signals. This facilitates identifying and mapping 
of the major depositional units and allows rapid interpretation of 
the formation tops with both depth and regional context (Figure 
3). This methodology is systematically applied to create strike- 
and dip-oriented line of sections across the basin, which forms 
the basis for a basin wide stratigraphic correlation.

The application also allows quality control of the interpreted 
sections, through interactive selection of log curves from the line 
of section and manual well top adjustments for quality assurance 
(Figure 4). The interpreted well top picks from this regional 
interactive interpretation tool were then exported and incorporat-
ed into our standard interpretation software platform Kingdom 

when dealing with dense well-log datasets, such as those found 
in many US onshore basins. This calls for the development of an 
automated approach (Shaw and Cubitt, 1979, Wu and Nyland, 
1987) that is scalable and reproducible across various basins. 
Earlier attempts to use computers for well log cross correlation 
algorithms used time equivalent sample pairs (Mann & Dowell, 
1978; Rudman & Lankston, 1973). Currently, the Dynamic Time 
Warping (DTW) algorithm is widely used for these purposes, due 
to its ability to better handle log variabilities (Baville et al., 2022, 
Grant et al., 2018, Hladil et al., 2010; Wu et al., 2018; Zoraster et 
al., 2004, Sylvester, 2023).

Building on these foundations, we present a novel workflow 
for developing a basin-scale stratigraphic architecture for defining 
the major saline reservoirs and sealing units within a basin. With 
a sample size of 155,732 subsurface logs from Gulf Coast basin, 
we demonstrate a comprehensive interactive workflow developed 
for large-scale regional stratigraphic mapping, providing a basin-
wide database of well tops for the subsurface geologic units 
that is required for subsequent reservoir characterisation. Our 
semi-automated, user-guided workflow enhances the efficiency 
of the regional stratigraphic mapping significantly and can be 
scaled up to any other basin.

Study Area
The study area extends across 53 million acres of southern US 
Gulf Coast of Texas and Louisiana that includes onshore coastal 
areas and the state waters, including the recent CCS lease areas 
from the Texas General Land Office (GLO), (Figure 1). Presence 
of numerous local point emission sources of CO2, with availa-
bility of nearby storage opportunities, and existing infrastructure 
makes the US Gulf Coast an attractive area for subsurface CO2 
storage. The availability of an extensive dataset of 155,732 wells 

Figure 2 Storage assessment workflow with the dashed-line-box highlighting the 
focus of this study, the saline reservoir definition.



F I R S T  B R E A K  I  V O L U M E  4 2  I  O C T O B E R  2 0 2 4 9 7

SPECIAL TOPIC: ENERGY TRANSITION

155,732 wells in the Gulf Coast area. From there, 102,513 wells 
have formation tops interpreted from our interactive interpretation 
platform, and a set of 43,380 wells, selected through a decimation 
process, had Chronolog tops that were used in our analysis.

We used spontaneous potential (SP) logs in the Chronolog 
workflow to define unsupervised tops, derived from the strati-
graphic framework obtained using the cloud-based application. 

suite, for further quality control through generating structural and 
isopach maps and iteratively updating the interpreted well tops.

Automated enhancement of stratigraphic picks
The Chronolog python module (Sylvester, 2023) provides 
automated tools for constructing a high-resolution stratigraphic 
model from an initial input set of interpreted formation tops 
that constrains the well-log correlation and extends geological 
interpretations in between the input set of formations. Chronolog 
workflow was extended to handle the high volume of well-log and 
interpreted formation top data (Gonzalez et.al., 2024). To prevent 
oversampling in regions with adequate data coverage and existing 
interpretations, we implemented a decimation process. This pro-
cess allowed the selection of wells from each cross-section, based 
on a specified distance criterion. We have selected a decimated 
well set of 43,380 vertical wells from the original database as input 
to our Chronolog process. Table 1 shows our study focuses on 

Figure 3 Regional cross-sectional view of Spontaneous Potential (SP) logs displaying depositional units for basin-scale mapping. The application enabled interactive 
interpretation of 12 formation tops across the study area and direct saving of standardised names and cross-section numbers to a cloud database for further quality assurance.

Figure 4 Interactive well log curve visualisation for quality assurance of picked tops, allowing users to adjust interpreted tops from the regional section to align with well log 
resolution.

Description Number of Wells

Total wells in Gulf Coast 155,732

Wells in Gulf Coast study area with 
formation tops

102,513

Wells with Chronolog tops (selected through 
decimation process)

43,380

Table 1 Well sample size.
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ualisations of the correlations. Figure 6a showcases these DTW 
correlations across different formations within the study area, 
highlighting the distinct SP signal responses. Figure 6b shows a 
regional cross-section view of the SP logs from the cloud-based 
interpretation platform, displaying the final set of formation 
tops, including the unsupervised tops defined between the major 
hand-picked tops.

To ensure consistency of formation tops across all wells, 
we employed an iterative method to interpolate any missing 
tops. This process consists of two main steps: (1) creating an 
isopach grid between the identified tops and bases, and (2) 
applying thickness mapping to estimate the missing formation 
tops (Gonzalez et.al., 2024). In cases where a well log signal 
is absent, interpreted tops from the interpretation platform are 
used as control points to guide the interpolator in regions with 

First, we constructed well-distance graphs (Figure 5) for each 
formation to connect proximal wells, facilitating well-to-well 
correlations. These correlations are conducted using Dynamic 
Time Warping (DTW) and relative geological time, enabling us 
to define formation tops at various scales. Understanding the dis-
tribution of wells allows us to select suitable distance parameters 
for representative correlation. Different well networks have been 
created, based on the spatial distribution of the geologic units 
within the study area. For instance, Figure 5a (Upper Pliocene 
Formation) shows that the well network is located only within 
specific areas of the basin. In contrast, Figure 5b (Frio Formation) 
reveals dense well coverage across the study area, where a highly 
connected set of wells is used for the well-to-well correlation.

By integrating DTW with relative geological time, we 
achieve more accurate well-pair relationships and clearer vis-

Figure 5 a) Sparse distribution of wells in the Upper 
Pliocene Formation. b) Extensive well distribution 
within the Frio Formation, and a zoomed-in view of an 
area with dense well distribution.

Figure 6 (a) Pairwise Dynamic Time Warping 
(DTW) correlations, illustrating the alignment and 
comparison of normalised SP log data across various 
geological formations. (b) Visualisation of the final set 
of Chronolog tops in the regional cross-section view, 
along with the major hand-picked tops.

(a)

(b)
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Although the calculations are identical to various interpreta-
tions for oil and gas purposes, our usage of them is focused on 
quantifying the CO2 storage, as shown in Equation 1, modified 
from Goodman et. al., 2011.

CO2sc = A * H * Ø * (1 – Swirr – Shcres) * ρCO2 * E,

where, CO2sc= CO2 storage capacity, A= Area, H= Net thick-
ness, φ= Effective Porosity, Swirr= Irreducible water saturation,  
Shcres= Residual hydrocarbon saturation, ρCO2= CO2 density, 
E=Efficiency.

Results
The study demonstrates our ability to effectively correlate an 
expansive, basin-scale well database to define the stratigraphic 
architecture and delineate the distribution of key geologic units 
within the basin. We have generated 307,900 formation tops 
for 102,513 wells within the study area over a three-month 
timeframe. This was made possible by the combination of 
the ARLAS, and Chronolog tools, providing a complete and 
continuous dataset integrated into the interactive interpretation 
platform for analysis. The dense well distribution enabled precise 
mapping of structural features within the basin, enhancing our 
understanding of subsurface geology (Figure 8). We have gener-
ated a comprehensive set of interpolated tops, through an iterative 
process, using thickness/isopach maps, that help to maintain the 
integrity of the geological model and prevent formation grids 
from intersecting across unsupervised and interpreted tops. This 
process ensures that our geological model reflects an accurate 
and continuous representation of subsurface formations across 
the basin, providing valuable insights for further analysis and 
decision-making for subsurface CO2 storage.

Structural distribution and thickness variability of the reser-
voir units mapped across the study area include Upper and Lower 
Pliocene, Upper, Middle, and Lower Miocene, Frio, Vicksburg, 
Upper and Lower Claiborne, Upper, middle and Lower Wilcox, 

poor coverage. This method ensures that geological features 
are accurately depicted, avoiding any overlaps and ensuring 
stratigraphic model continuity.

Petrophysical analysis
The regional mapping of the saline reservoir units is followed 
by the petrophysical assessment and storage capacity estimation 
at the well level, currently in progress within the study area. 
In an assessment of CO2 storage capacity, we need to evaluate 
the reservoir in much the same manner as with standard oil 
and gas. However, it does require additional factors such as the 
irreducible water saturation, residual hydrocarbon saturation, and 
the reservoir temperature and pressure for evaluating CO2 density. 
Figure 7 shows an illustration of the updated petrophysical work-
flow used for our CO2 storage calculation.

Figure 7 Diagram illustrating the petrophysical calculation workflow for CO2 storage 
capacity calculation.

Figure 8 Regional dip-oriented section from the Texas Gulf Coast, displaying compressed SP log responses and the picks for key formation tops. The inset map shows the 
location of the cross-section within the Texas Gulf Coast, where 1091 cross-sections were created to define the stratigraphic framework.
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Conclusions
Identifying and mapping CO2 injection units and their regional 
barriers presents a major challenge in scaling up CO2 storage 
assessments. Over half of the geoscience effort is dedicated to 
stratigraphic interpretation when evaluating new basins for saline 
reservoir suitability. This is largely due to the time- and labour-in-
tensive manual processes involved in well-log correlation and top 
identification.

Therefore, we introduce an accelerated workflow for basin-
scale stratigraphic modelling in the US Gulf Coast, leveraging 
extensive subsurface data, an interactive interpretation workflow, 
and automation through the ARLAS and Chronolog tools. Our 
study showcases the effectiveness of interactive visualisation and 
quality control of the high-frequency Chronolog tops in defining 
reservoir units and mapping seals across the basin. This method-
ology condenses up to 1500 well log data into a single section, 
enabling intuitive interpretation of stratigraphic surfaces. This 
is crucial for complex basins like the Gulf Coast, where facies 
variability occurs along both depositional strike and dip direction.

By analysing 43,380 well log data, core data, and expert 
geological and petrophysical interpretations, we have developed 
a comprehensive regional stratigraphic architecture. This archi-
tecture identifies key saline reservoir units, such as the Upper and 
Lower Pliocene, Miocene, and Frio, and highlights important seals 
like the Amph-B Shale and Anahuac Shale. This detailed mapping 

and Cretaceous. Regional and intra-formational seal units, such 
as Amph-B shale, Anahuac Shale, and Midway, are also mapped 
for the purpose of storage integrity assessment. We demonstrate 
that the prospectivity of the Tertiary section varies significantly 
across the basin. Regional structure and depositional slopes can 
be characterised and through extensive mapping, penetrations for 
stratigraphic surfaces are recognised, allowing for the intelligent 
subdivision of the basin for petrophysical interpretations. The 
availability of the expansive well log data, including ARLAS 
logs and other standardised, pre-processed well data, ensures that 
our interpretations are based on robust and reliable information, 
thereby increasing the accuracy and confidence in our saline res-
ervoir definition. These saline reservoir zones are then evaluated 
for their storage suitability assessment and capacity estimation by 
generating a basin-wide petrophysical model for the study area.

Figure 9 presents the structure (a) and isopach (b) maps of 
the Lower Miocene reservoir units, highlighting the variability 
of reservoir depth and thickness along the basin resulting from 
the basin architecture. Structural changes impose geologic con-
straints on the reservoir suitability assessment, highlighting 
areas with pressure and temperature conditions suitable for CO2 
injection. Through extensive mapping, we can characterise the 
variability of regional structure and depositional slopes. These 
varying conditions will guide the petrophysical model building 
for each of the distinct structural settings.

Figure 9 (a)Structure and (b) isopach maps of the 
Lower Miocene saline reservoir units from the study 
area.

(a)

(b)
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is vital for assessing storage integrity and supporting successful 
CO2 storage projects. This integrated approach not only stream-
lines the stratigraphic interpretation process but also improves the 
accuracy and efficiency of identifying potential CO2 storage sites.

Our continued work involves a petrophysical assessment 
at the well level, followed by the regional mapping of the key 
reservoir attributes and estimated storage, which is currently in 
progress within the study area. Building on the success of our cur-
rent study, we plan to replicate this workflow across other basins 
to further validate and refine our methodology. By applying our 
semi-automated, user-guided process to different geological 
settings, we aim to assess the adaptability and robustness of our 
approach in a variety of environments.
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